idw - Informationsdienst
Wissenschaft
Ferroic materials such as ferromagnets and -electrics underpin modern data storage, yet face limits: they switch slowly, or suffer from unstable polarization due to depolarizing fields respectively. A new class, ferroaxials, avoids these issues by hosting vortices of dipoles with clockwise or anticlockwise textures, but are hard to control. Researchers at the Max-Planck-Institute for the Structure and Dynamics of Matter (MPSD) and the University of Oxford now show that bi-stable ferroaxial states can be switched with single flashes of polarized terahertz light. This enables ultrafast, light-controlled and stable switching, a platform for next-generation non-volatile data storage.
Modern society relies on digital technologies, where all information is fundamentally encoded in a binary system of 0s and 1s. Consequently, any physical system capable of reliably switching between two stable states can, in principle, serve as a medium for digital data storage.
Ferroic materials are solids that can be switched between two such stable states. The most familiar examples are ferromagnets, which can be magnetized in opposite directions, and ferroelectrics, which can hold opposite electric polarizations. Because these states are readily switchable by magnetic or electric fields, these ferroic materials are widely used in today’s data storage and electronic technologies. However, these systems also come with drawbacks: they are vulnerable to external influences—such as strong magnetic fields near a hard drive—and tend to degrade over time. This makes the search for alternative data storage technologies highly attractive.
Ferroaxial materials are a recent addition to the ferroic family. Instead of magnetic or electric states, these solids host vortices of electric dipoles that can be oriented in two opposite directions without creating a net magnetization nor electric polarization. These are very stable and are unaffected by external fields, but for the same reason very difficult to control, which has limited their exploration until now.
The research team, led by Andrea Cavalleri, used circularly polarized terahertz light pulses to switch between clockwise and anti-clockwise ferroaxial domains in a material termed rubidium iron dimolybdate (RbFe(MoO₄)₂) . “We take advantage of a synthetic effective field that arises when a terahertz pulse drives ions in the crystal lattice in circles,“ says Zhiyang Zeng, lead author of this work. “This effective field is able to couple to the ferroaxial state, just like a magnetic field would switch a ferromagnet or an electric field would reverse a ferroelectric state,” he added. “By adjusting the helicity, or twist, of the circularly polarized light pulses, we can selectively stabilize a clockwise or anti-clockwise rotational arrangement of the electric dipoles,” continues fellow author Michael Först, “in this way enabling information storage in the two ferroic states. Because ferroaxials are free from depolarizing electric or stray magnetic fields, they are extremely promising candidates for stable, non-volatile data storage.”
"This is an exciting discovery that opens up new possibilities for the development of a robust platform for ultrafast information storage," says Andrea Cavalleri "it also shows how circular phonon fields, first achieved in our group in 2017, are emerging as a new re-source for the control of exotic materials phases"
This work was primarily supported by the Max Planck Society and by the Max-Planck Graduate center for Quantum Materials, supporting collaborations with the University of Oxford. The MPSD is also associated with and receives funding from the Deutsche Forschungsgemeinschaft via the Cluster of Excellence ‘CUI: Advanced Imaging of Matter’. The MPSD is a partner of the Center for Free-Electron Laser Science (CFEL) with DESY and the University of Hamburg.
Zhiyang (Paul) Zeng: zhiyang.zeng@mpsd.mpg.de
Michael Först: michael.foerst@mpsd.mpg.de
Andrea Cavalleri: andrea.cavalleri@mpsd.mpg.de
Z. Zeng, M. Först, M. Fechner, D. Prabhakaran, P. G. Radaelli, A. Cavalleri
Photo-induced nonvolatile rewritable ferroaxial switching
Science 390 (6769), 195-198 (2025)
https://dx.doi.org/10.1126/science.adz5230
https://www.mpsd.mpg.de/1086480/2025-10-zeng-foerst-cavalleri-science Institute Website
Terahertz light can reversibly switch an unusual form of structural order in solids—called ferroaxia ...
Copyright: © Jörg Harms (MPSD)
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler, jedermann
Physik / Astronomie, Werkstoffwissenschaften
überregional
Forschungsergebnisse
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).