idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.10.2025 11:00

Supersolid spins into synchrony

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    Supersolids, a state of matter that combines the rigidity of a solid with the frictionless flow of a superfluid, exhibit surprising synchronization when rotated. Innsbruck researchers found that quantum vortices—tiny whirlpools in the quantum fluid— cause the precession and revolution of the superfluid crystal structure to synchronize their motion. This discovery provides a new tool for studying fundamental properties of quantum systems.

    A supersolid is a paradoxical state of matter—it is rigid like a crystal but flows without friction like a superfluid. This exotic form of quantum matter has only recently been realized in dipolar quantum gases. Researchers led by Francesca Ferlaino set out to explore how the solid and superfluid properties of a supersolid interact, particularly under rotation. In their experiments, they rotated a supersolid quantum gas using a carefully controlled magnetic field and observed a striking phenomenon: “The quantum droplets of the supersolid are in a crystal-like periodic order, all dressed by a superfluid between them”, explains Francesca Ferlaino “Each droplet precesses following the rotation of the external magnetic field; they all revolve collectively. When a vortex enters the system, precession and revolution begins to rotate synchronously.”

    “What surprised us was that the supersolid crystal didn’t just rotate chaotically,” says Elena Poli, who led the theoretical modeling. “Once quantum vortices formed, the whole structure fell into rhythm with the external magnetic field—like nature finding its own beat.”

    Andrea Litvinov, who conducted the experiments, adds: “It was thrilling to see the data suddenly align with the theory. There was a moment when the system just ‘snapped into rhythm’.”

    A new probe for quantum matter

    Synchronization is when two or more systems fall into rhythm with each other. It’s common in nature—like pendulum clocks ticking in unison, fireflies flashing together, or heart cells beating in sync. The Innsbruck team showed that even exotic quantum matter can synchronize.

    The discovery not only deepens understanding of this unusual state of matter but also offers a powerful new way to probe quantum systems. By tracking synchronization, the team was able to determine the critical frequency at which vortices appear— a fundamental property of rotating quantum fluids that has been difficult to measure directly.

    The team combined advanced simulations with delicate experiments on ultracold atoms of dysprosium, cooled to just billionths of a degree above absolute zero. Using a technique called magnetostirring, they were able to rotate the supersolid and capture its evolution with high precision.

    From the lab to the cosmos

    The findings could have implications beyond the laboratory. Similar vortex dynamics are thought to play a role in sudden “glitches” observed in neutron stars, some of the densest objects in the universe. “Supersolids are a perfect playground to explore questions that are otherwise inaccessible,” says Poli. “While these systems are created in micrometer-sized laboratory traps, their behavior may echo phenomena on cosmic scales.”

    “This work was made possible by the close collaboration between theory and experiment—and the creativity of the young researchers on our team,” says group leader Francesca Ferlaino from the University of Innsbruck’s Department of Experimental Physics and the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences (ÖAW). The research was conducted in partnership with the University of Trento’s Pitaevskii BEC Center.

    The study, published in Nature Physics, was supported by the Austrian Science Fund (FWF), the Austrian Research Promotion Agency (FFG), and the European Union, among others.


    Wissenschaftliche Ansprechpartner:

    Francesca Ferlaino
    Department of Experimental Physics
    University of Innsbruck
    +43 512 507 52440
    francesca.ferlaino@uibk.ac.at
    https://www.erbium.at/


    Originalpublikation:

    Synchronization in rotating supersolids. Elena Poli, Andrea Litvinov, Eva Casotti, Clemens Ulm, Lauritz Klaus, Manfred J. Mark, Giacomo Lamporesi, Thomas Bland, and Francesca Ferlaino. Nature Physics 2025 DOI: 10.1038/s41567-025-03065-7 [https://www.nature.com/articles/s41567-025-03065-7]


    Bilder

    Innsbruck researchers found that quantum vortices—tiny whirlpools in the quantum fluid— cause the precession and revolution of the superfluid crystal structure to synchronize their motion.
    Innsbruck researchers found that quantum vortices—tiny whirlpools in the quantum fluid— cause the pr ...
    Quelle: Andrea Litvinov
    Copyright: Universität Innsbruck


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).