idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.11.2025 10:54

Protein factories under heat stress: What archaea can teach us about RNA stability

Dr. Karoline Stürmer Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    How heat-loving archaea adapt their cellular machinery to survive, and why this may be important for vaccine development.

    Hyperthermophilic archaea are true survival experts. They thrive in boiling hot springs and deep-sea vents – environments lethal to nearly all other forms of life. Researchers at the German Archaea Center and the Center for Biochemistry, University of Regensburg, as part of an international research team, have now discovered another key to their unusual robustness: These microorganisms can specifically adapt their protein factories, the ribosomes, to extreme temperatures. The study shows that they do this by modifying their ribosomal RNA, a central building block of ribosomes, thereby keeping protein production stable under extreme conditions.

    This study builds on the work of the Israeli research team led by Schraga Schwartz, who developed a novel technology known as Pan-Mod-seq. This technology makes it possible for the first time to systematically and simultaneously detect RNA changes in a wide variety of cell types – from simple bacteria to archaea, yeast cells, and human cells. Dr. Felix Grünberger explains: “In earlier work, we were already able to track when and where a single, known RNA modification is incorporated into ribosomal RNA. With Pan-Mod-seq, researchers can now identify a large number of RNA modifications in parallel and at high throughput, a capability that was unimaginable until recently.”

    The new technology proved particularly effective thanks to Regensburg's expertise in RNA biology, its unique strain collection, and its specialized know-how in cultivating extremophilic archaea. For this study, it was therefore possible to use the world record holders among hyperthermophilic archaea, which grow optimally at temperatures of up to 113°C.

    The result: in bacteria, standard archaea, and higher organisms such as human cells, these modifications remain largely unchanged. Extremely heat-loving archaea, however, perform molecular precision work: on the one hand, the density of the modifications is exceptionally high, and on the other hand, around half of the modifications adapt dynamically – they are actively added or removed depending on the temperature. Images from cryo-electron microscopy impressively show how these chemical changes stabilize the ribosomes forming additional stabilizing contacts in the protein-RNA network. Dr. Robert Reichelt reports: “We were able to prove that without these molecular adaptations, hyperthermophilic archaea can no longer grow in their extreme environment.”

    Prof. Dr. Dina Grohmann, Chair of Microbiology and Director of the German Archaean Center, comments enthusiastically: "This groundbreaking discovery was only made possible by the close collaboration of an international and interdisciplinary team from Israel, the USA, Japan, France, and Germany, which brought all the pieces of the puzzle together. I am especially intrigued by the unique position of our hyperthermophilic archaea, a discovery that paves the way for new research directions!"
    The results are not only exciting for microbiology. RNA modifications also play a central role in modern medicine – for example, in mRNA vaccines. Here, chemical modifications are specifically added to the RNA to increase the stability of the vaccine and avoid unwanted immune reactions. A better understanding of how extreme microbes “tailor” their RNA can provide valuable insights for the targeted design of stable RNA molecules in biomedical applications.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Dina Grohmann
    Lehrstuhl für Mikrobiologie & Archaeen-Zentrum
    & Single-Molecule Biochemistry Group
    Universität Regensburg
    Tel: +49 - (0)941 - 943 3147
    Mail: dina.grohmann@biologie.uni-regensburg.de


    Originalpublikation:

    DOI: 10.1016/j.cell.2025.09.014


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Biologie
    überregional
    Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).