idw - Informationsdienst
Wissenschaft
Researchers at the University of Hamburg, the University of Toulouse, and the DESY and ESRF research institutes have observed for the first time in real time how iron-sulfur nanostructures form in solutions. Using time-resolved X-ray methods, the researchers were able to visualize the entire reaction pathway – from the initial molecular precursors to complete ultra-thin nanolayers. These findings offer valuable insights into the formation of so-called metastable materials and have now been published in the renowned Journal of the American Chemical Society (JACS).
Iron-sulfur compounds play a significant role in both geological processes and technological applications, such as energy material research. Of particular interest is the mineral greigite (Fe₃S₄), which is characterized by exceptional magnetic and electronic properties. Despite intensive research, however, it has remained unclear how such nanostructures form in chemical synthesis.
An international team led by Prof. Dr. Dorota Koziej from the University of Hamburg and the Cluster of Excellence “CUI: Advanced Imaging of Matter” has succeeded in deciphering the previously hidden formation process as part of the ERC Consolidator Project LINCHPIN. To do this, the researchers combined several X-ray methods at the high-energy X-ray sources of the European Synchrotron Radiation Facility (ESRF) and DESY, applying in particular the so-called vtc XES method under real reaction conditions in solution and at higher temperatures. Without the highly brilliant X-ray sources at the ESRF, the otherwise very weak signal would not have been measurable. While the reaction was underway, the team simultaneously observed the structure, the oxidation state of the iron, and the chemical bonding environment.
The measurements show that the desired material does not form directly. Instead, a short-lived, layer-like intermediate iron sulfide is first formed. This grows preferentially in two dimensions and then passes on its crumpled nanosheet shape to the final material. In a so-called topotactic transformation step, the atoms in the solid rearrange themselves, but particles preserve their characteristic crumpled nanosheet shape.
“We were able to gain a very good overview of the individual steps of the reaction – from the initial reduction of the iron compound to the formation of the final iron-sulfide nanostructure,” says Dr. Cecilia Zito. “Such detailed insights are only possible by combining several analytical methods at a synchrotron using specially developed measuring cells,” adds Dr. Lars Klemeyer.
The research results are significant far beyond the specific material system investigated. They demonstrate the extent to which intermediate steps and growth dynamics determine the final form of nanomaterials. These insights are crucial for the targeted design of nanostructures in the future, for example for more efficient energy storage devices, catalysts, or functional materials.
At the same time, the experiments provide new clues as to how similar minerals may have formed in nature, for example in the oxygen-poor environments of the early Earth.
The work also highlights the potential of modern multimodal in situ X-ray analysis methods to decipher chemical processes at the molecular and nanoscale level over time – an approach that can be applied to many other material systems in the future.
Prof. Dr. Dorota Koziej
Institute of Nanostructure and Solid State Physics
University of Hamburg
Tel.: +49 40 42838-1619
Email: dorota.koziej@uni-hamburg.de
Cecilia A. Zito, Lars Klemeyer, Francesco Caddeo, Brian Jessen, Sani Y. Harouna-Mayer, Lise-Marie Lacroix, Malte Langfeldt, Tjark L. R. Gröne, Jagadesh K. Kesavan, Chia-Shuo Hsu, Alexander Schwarz, Ann-Christin Dippel, Fernando Igoa Saldaña, Blanka Detlefs, and Dorota Koziej
In situ X ray Synchrotron Studies Reveal the Nucleation and Topotactic Transformation of Iron Sulfide Nanosheets
J. Am. Chem. Soc. 147, 47409−47420 (2025)
DOI: 10.1021/jacs.5c15843
https://www.cui-advanced.uni-hamburg.de/en/research/wissenschaftsnews/26-01-21-n...
The nanostructure does not form directly, but rather via a layer-like intermediate product that grow ...
Quelle: Ella Maru Studio
Copyright: Ella Maru Studio
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler, jedermann
Chemie, Geowissenschaften, Physik / Astronomie, Werkstoffwissenschaften
überregional
Wissenschaftliche Publikationen
Englisch

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).