idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.02.2026 13:08

Cosmic Radiation Brought to Light: Researchers Measure Ionisation in Dark Cloud for the First Time

Birte Vierjahn Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    Where starlight doesn't reach, new things are born: For the first time, an international research team has directly measured the effect of cosmic radiation in a cold molecular cloud. The observation shows how charged high-energy particles influence the gas in these lightless regions where stars are formed. Dr Brandt Gaches, head of the Emmy Noether Group ‘Towards the Next Generation in Cosmic Ray Astrochemistry’ at the University of Duisburg-Essen, was part of the effort to propose and observe these effects with the James Webb Space Telescope and provided support through astrochemical models of cosmic-ray chemistry. Nature Astronomy publishes their findings.

    Stars and planets form in cold, dense clouds of gas and dust. One such cloud is called Barnard 68, located about 500 light years from Earth in the constellation Ophiuchus. Its interior is 9 Kelvin (−264 °C) cold and so dense (and thus opaque) that light can hardly penetrate it. Cosmic rays play an important role here, as high-energy, charged particles from space ionise* the gas and regulate the chemistry and temperature, enabling the buildup of complex chemistry in these cold and dense regions.

    The importance of cosmic rays is encoded in a key parameter, the cosmic-ray ionisation rate – the rate at which cosmic rays ionise molecular hydrogen per second. The cosmic-ray ionisation rate is one of the fundamental parameters in the chemistry of the molecular universe. Until now, estimations of the ionisation relied primarily on estimations through chemical line observations and models. ‘Previously, researchers had to take a roundabout approach by observing rare molecules such as protonated molecular hydrogen or molecular ions and then attempting to calculate the ionisation rate from their concentrations,’ says Gaches. However, such models depend on many assumptions – about density, temperature, electron abundance, and reaction pathways – and lead to highly variable results.

    Researchers recently developed the idea of using the new, extremely sensitive James Webb Space Telescope to measure extremely faint infrared lines that arise when cosmic rays directly excite the gas. The theoretical concept of these directly excited lines dates back decades, but direct observations have evaded astronomers. Previous studies, including work by Gaches, used chemical models to show that these near-infrared lines are a reliable tracer of cosmic-ray ionization.

    However, an international team led by the Technion Israel Institute of Technology has now clearly detected three of these lines – exactly as theoretical models had predicted for decades. Pointing the spectrometer of the James Webb Space Telescope at Barnard 68, it detected a faint glow of directly stimulated molecular hydrogen (H₂). This is the first time that cosmic rays have been observationally confirmed to directly stimulate measurable infrared lines. A follow up study, now in press, used these observations to directly measure rapidly cosmic rays lose energy in dense interstellar clouds.

    These observations open up a new window of observational investigations into cosmic-ray physics and chemistry in star-forming regions. Future observations with the highly sought-after James Webb Space Telescope have also been approved to extend this analysis to another nearby cloud.

    * During ionisation, electrons are stripped from atoms and molecules. The resulting ions are positively charged.


    Wissenschaftliche Ansprechpartner:

    Dr. Brandt Gaches, Towards the Next Generation in Cosmic Ray Astrochemistry, +49 203/37 9-3327, brandt.gaches@uni-due.de


    Originalpublikation:

    https://doi.org/10.1038/s41550-025-02771-9


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).