idw - Informationsdienst
Wissenschaft
• Neutral particles move remarkably faster than diffusion in an electrolyte driven by an electric field, depending on the number of dimensions they can move in
• The agility of the motion of a particle depends on the time scale and can go through different regimes
• The resulting model predicts the behavior of particles in molecular sensing technologies or active matter in biophysical systems
Technologies for energy storage as well as biological systems such as the network of neurons in the brain depend on driven electrolytes that are travelling in an electric field due to their electrical charges. This concept has recently also been used to engineer synthetic motors and molecular sensors on the nanoscale or to explain biological processes in nanopores. In this context, the role of the background medium which is the solvent and the resulting hydrodynamic fluctuations play an important role. Particles in such a system are influenced by these stochastic fluctuations, which effectively control their movements.
“When we imagine the environment inside a driven electrolyte at the nanoscale, we might think of a calm viscous medium in which ions move due to the electric field and slowly diffuse around. This new study reveals that this picture is wrong: the environment resembles a turbulent sea, which is highly nontrivial given the small scale,” explains Ramin Golestanian, who is director of the Department of Living Matter Physics at MPI-DS, and author of the study. The study uncovers how the movement of the ions creates large-scale fluctuating fluid currents that stir up the environment and lead to fast motion of all the particles that are immersed in the environment, even if they are not charged.
“Interestingly, the behavior exhibits different regimes depending on the time scale and dimensionality of the system,” comments Golestanian. “This analysis highlights the dominant role of many-body hydrodynamic interactions in creating emergent properties in microscopic non-equilibrium systems,” he concludes.
This model helps to describe and predict the behavior or particles at the nanoscale in biophysical systems such as ion channels and nanopores. Likewise, it can be beneficial for the development of nanoscale sensing technologies that detect single molecules.
Prof. Ramin Golestanian
https://journals.aps.org/prl/abstract/10.1103/jvmh-6j8z
https://www.ds.mpg.de/4113411/260212_Golestanian_fluctuations
Neutral particles – here shown in red – move faster than diffusion in an electrolyte solution due to ...
Copyright: MPI-DS
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Chemie, Physik / Astronomie
überregional
Forschungsergebnisse
Englisch

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).