idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Medienpartner:
Wissenschaftsjahr


Teilen: 
07.06.2012 11:34

Drahtseilakt im Gehirn: Wie Nervenimpulse entstehen

Silke Oßwald Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Molekulare Pharmakologie (FMP)

    Bis zu 1000 elektrische Signale müssen einzelne Nervenzelle pro Sekunde aussenden, damit wir uns in der Welt zurechtfinden können. Wissenschaftler am FMP haben einen zentralen Schalter bei diesem Vorgang – den Glutamat-Rezeptor – genauer untersucht. Bis ins Detail verstehen die Forscher inzwischen die molekulare Maschinerie, durch die Gedanken, Sinneseindrücke und Reaktionen überhaupt erst möglich sind. Der Glutamat-Rezeptor entscheidet dabei nicht nur über die Leistungsfähigkeit unseres Gehirns, sondern könnte auch eine Rolle spielen bei Störungen wie Schlaganfällen, Parkinson und Epilepsie.

    Ohne ihn geht gar nichts: Der Glutamat-Rezeptor ist eines der zentralen Moleküle in unserem Nervensystem und steht daher weltweit im Mittelpunkt vieler Forschungsprojekte. Wenn man seine Funktionsweise vollständig verstehen und präzise manipulieren könnte, dann würde dies die Medizin einen großen Schritt voranbringen.
    Der Rezeptor sitzt in den Membranen von Nervenzellen und wird durch den Neurotransmitter Glutamat aktiviert: Bindet Glutamat auf der Außenseite, dann öffnet sich eine winzige Pore in der Zellmembran, geladene Ionen strömen ein und auf diese Weise wird ein elektrisches Signal erzeugt – bis zu tausendmal in einer Sekunde aufs Neue. „Nervenimpulse müssen so schnell sein, damit wir unsere Umwelt verstehen und reagieren können“, erklärt Andrew Plested, der am FMP den Glutamat-Rezeptor erforscht. „Ein Tennisspieler zum Beispiel erkennt im Bruchteil einer Sekunde wohin ein Ball fliegen wird und hechtet in die richtige Richtung. Und bei allen Tönen, die wir hören, schwingt unser Trommelfell hunderte oder tausende Male in einer Sekunde – nur mit sehr schnellen Nervenimpulsen können wir so etwas interpretierten.“
    Den jungen Forscher treibt daher die Frage an, wie ein Bio-Molekül so präzise und so schnell Signale vermitteln kann. Um das herauszufinden, hat er den Rezeptor in seine Einzelteile zerlegt und wie mit einem Baukasten neu zusammengesetzt. Dabei hat er die Tatsache ausgenützt, dass jeder Glutamat-Rezeptor aus verschiedenen Modulen zusammengesetzt ist und außerdem in verschiedenen Untertypen vorkommt: So richtig schnell reagiert der sogenannte AMPA-Typ, dagegen ist der Kainat-Typ eher langsam. Andrew Plested und seine Mitarbeiterin Anna Carbone haben Teile des langsamen in den schnellen Rezeptor verpflanzt und umgekehrt. Die Forscher „zerschneiden“ dabei nicht den Rezeptor selbst, sondern nehmen das entsprechende Gen – die Bauanleitung – auseinander und kombinieren die Stücke neue. Anschließend testen sie die neu entstandenen Rezeptoren in Zellkulturen.
    Die Forscher fanden durch diese Experimente heraus, dass es ein bestimmtes Modul ist, durch das ein langsamer Rezeptor zu einem schnellen wird – der Teil des Rezeptors, an den Glutamat andockt. Bindet der Neurotransmitter dort, dann verbiegt sich das gesamte Rezeptormolekül ein wenig – so als ob man eine Murmel in ein enges Drahtgeflecht schiebt. Durch dieses Verbiegen öffnet sich dann die Pore in der Nervenzelle. „Dabei könnte wichtig sein, dass das Molekül – ganz vereinfacht ausgedrückt – weder zu steif noch zu ‚wabbelig‘ ist,“ erklärt Plested. Entscheidend ist auch, dass der Rezeptor nicht nur schnell und empfindlich reagiert, sondern nach einer Aktivierung für eine winzige Zeitspanne unempfindlich gegenüber Glutamat wird. „In den Rezeptor ist quasi ein Timer eingebaut“, erklärt Plested. „Ansonsten wären die einzelnen Signale zu lang und würden ineinander verschwimmen.“

    Wie wichtig der schnelle Rezeptor ist, zeigt sich auch daran, dass er bei geistig zurückgebliebenen Menschen mitunter von Geburt an durch Mutationen beschädigt ist. Der Glutamat-Rezeptor vermittelt dabei nicht nur augenblickliche Reaktionen, sondern sorgt durch seine Signale auch dafür, dass bei Lernprozessen bestimmte Nervenverbindungen verstärkt werden und Erinnerungen entstehen.
    Bei Krankheiten wie Parkinson und Epilepsie werden bereits Medikamente eingesetzt, die den Glutamat-Rezeptor blockieren, allerdings sind solche Substanzen meist noch zu unspezifisch und können Psychosen und Halluzinationen verursachen. „Unser langfristiges Ziel ist es, die Rolle des Glutamat-Rezeptors im lebenden Gehirn zu untersuchen“, sagt Andrew Plested, dessen Arbeitsgruppe auch Teil des Exzellenzcluster „NeuroCure“ an der Charité-Universitätsmedizin ist. Das könnte auch bei der Behandlung mancher Störungen von Bedeutung sein, wie zum Beispiel bei einem Schlaganfall: Hier wird in kurzer Zeit gefährlich viel Glutamat ausgeschüttet.“


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).