idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
12.06.2012 10:00

Magnetfeld bremst Stern ab

Kerstin Mork Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Astrophysik Potsdam

    Wissenschaftler haben in Theorie und Laborexperiment einen magnetischen Effekt nachgewiesen, der erklären könnte, warum einst sonnenähnliche Sterne sich am Ende ihres Lebens viel langsamer um die eigene Achse drehen als erwartet.

    Die Forscher des Leibniz-Instituts für Astrophysik Potsdam (AIP) haben das Magnetfeld der Sterne zunächst im Computer simuliert und dann mit Ergebnissen eines speziellen Experimentalaufbaus verglichen, der im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) realisiert worden ist. Ziel und Erfolg des Experiments war es nachzuweisen, dass ab einer kritischen Magnetfeldstärke eine theoretisch bekannte und vorhergesagte Instabilität des Magnetfeldes tatsächlich auftritt. Dieser magnetische Effekt kann das Plasma im Inneren eines Sterns zähflüssiger machen und dadurch seine Rotationsgeschwindigkeit stärker verringern.

    „Theoretisch haben wir die Tayler-Instabilität von Magnetfeldern schon seit Jahren als möglichen Mechanismus für das Abbremsen von Sternen in Betracht gezogen, nur war ihre tatsächliche Existenz bisher völlig unbewiesen. Nun ist sie sicher!“, sagt Günther Rüdiger, der Verantwortliche des Projekts auf Potsdamer Seite.„Unsere Berechnungen wurden durch das Experiment in hervorragender Weise bestätigt!“ freut sich auch Marcus Gellert, der mit Computer-Simulationen das Experiment vorbereitet hat.

    Geht man von einem Stern aus, dessen Kern sich ähnlich schnell um die eigene Achse dreht wie der unserer Sonne, so muss sich dieser im Laufe seiner Entwicklung auf etwa zehn Prozent des Anfangswertes verlangsamen, damit die tatsächlich beobachteten, weit geringeren Rotationsgeschwindigkeiten eines Sterns im Endstadium als Weißer Zwerg (10 km/s) oder Neutronenstern erreicht werden. Eine andauernde magnetische Instabilität böte den effektivsten Abbremsungsmechanismus und damit ein plausibles Erklärungsmodell für solch eine enorme Verlangsamung. Ob und wie kontinuierlich die Instabilität nicht nur im Labor sondern auch im Inneren der Sterne wirkt, werden zukünftige Beobachtungen und verbesserte Simulationen zeigen. Der jetzt erfolgte experimentelle Nachweis der Instabilität könnte damit ein wichtiges Detail in der Theorie der Sternentwicklung erschließen.

    Nach dem im Jahr 2010 mit dem Preis „Wissenschaft und Gesellschaft“ des Stifterverbandes für die deutsche Wissenschaft ausgezeichneten „PROMISE“-Experiment zur magnetischen Scherinstabilität, ist dies bereits das zweite Mal, dass die Potsdamer Wissenschaftler zusammen mit dem Team vom HZDR die Physik der Sterne erfolgreich ins Labor geholt haben.

    Das Leibniz-Institut für Astrophysik Potsdam (AIP) beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik. Daneben wirkt das Institut als Kompetenzzentrum bei der Entwicklung von Forschungstechnologie in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Das AIP ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Das AIP ist eine Stiftung bürgerlichen Rechts und ein Institut der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören derzeit 86 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie drei assoziierte Mitglieder, die wissenschaftliche Fragestellungen von gesamtgesellschaftlicher Bedeutung bearbeiten.

    Wissenschaftlicher Kontakt:
    Prof. Dr. G. Rüdiger, Dr. M. Gellert, Leibniz-Institut für Astrophysik Potsdam (AIP), E- Mail: gruediger@aip.de, mgellert@aip.de, Tel. : 0331-7499 530

    Presse-Kontakt:
    Dr. Gabriele Schönherr / Kerstin Mork, E-Mail: presse@aip.de, Tel.: 0331-7499469


    Weitere Informationen:

    http://arxiv.org/abs/1201.2318 Rüdiger G., Gellert M., Schultz M., Strassmeier K.G., Stefani F., Gundrum Th., Seilmayer M., Gerbeth G.: Critical fields and growth rates of the Tayler instability as probed by a columnar gallium experiment
    http://prl.aps.org/abstract/PRL/v108/i24/e244501 Martin Seilmayer, Frank Stefani u.a.: Evidence for transient Tayler instability in a liquid metal experiment, in: Physical Review Letters


    Bilder

    Numerische Simulationen zeigen eine starke Verzerrung des Magnetfeldes im Inneren eines Sterns ab einer kritischen Magnetfeldstärke
    Numerische Simulationen zeigen eine starke Verzerrung des Magnetfeldes im Inneren eines Sterns ab ei ...
    Credits: AIP
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).