idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Thema Corona

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Magazin
Teilen: 
23.05.2022 17:00

Mikropartikel mit Gefühl

Dr. Fanni Aspetsberger Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Marine Mikrobiologie

    Korallen beim Atmen zuschauen: Forschende entwickeln eine neue Methode zur gleichzeitigen Messung von Strömung und Sauerstoff.

    Ein internationales Forschungsteam unter Leitung des Bremer Max-Planck-Instituts für Marine Mikrobiologie, der Universität Aarhus und des Science for Life Institute in Uppsala hat winzige Partikel entwickelt, die den Sauerstoffgehalt in ihrer Umgebung anzeigen. So schlagen sie zwei Fliegen mit einer Klappe: Mit den kleinen Kügelchen können sie Strömungen und gleichzeitig den Sauerstoffgehalt verfolgen – spannende Perspektiven für viele Forschungsgebiete, von der Biologie bis zur Physik.

    Die Oberfläche einer Koralle ist rau. Das harte Skelett ist besiedelt von Polypen, die ihre Tentakel ins umliegende Wasser strecken, um Nahrung herauszufiltern. Aber wie genau fließt das Wasser über die Korallenoberfläche, welche Wirbel und Strömungen entstehen, und was bedeutet das für die Versorgung der Koralle und ihrer assoziierten Algen? Bislang gab es keine Antwort auf diese Fragen. Jetzt hat ein internationales Forschungsteam um Soeren Ahmerkamp vom Max-Planck-Institut für Marine Mikrobiologie in Bremen, Klaus Koren von der dänischen Universität Aarhus und Lars Behrendt von der Universität Uppsala und dem SciLifeLab in Schweden eine Methode entwickelt, mit der sich Strömungen und Sauerstoffkonzentrationen gleichzeitig auf kleinstem Raum untersuchen lassen. Und tatsächlich: Nun kann man sehen, wie die Korallen mit ihren kleinen Flimmerhaaren eine Strömung erzeugen, mit der sie mehr Sauerstoff heranfächeln.

    So genau und schnell wie nie

    Sauerstoff und Leben sind untrennbar verknüpft, von einzelnen Zellen bis hin zu ganzen Organismen. In kleinster räumlicher und zeitlicher Auflösung, auf wenigen Mikrometern und innerhalb von Millisekunden, verändern sich Sauerstoffwerte infolge von Strömungen oder dadurch, was die Organismen machen. Bisherige Methoden haben Sauerstoffwerte und Strömungen meist getrennt gemessen, wodurch viele Zusammenhänge nicht erfasst werden konnten. Ahmerkamp und seine Kolleginnen und Kollegen machen das nun in einem: Sie messen die Sauerstoffkonzentration und Strömung gleichzeitig und mit bisher unerreichter Genauigkeit und Geschwindigkeit. Die Forschenden taufen ihre neu entwickelte Methode sensPIV. PIV ist die Abkürzung für „Particle Image Velocimetry“, eine etablierte Methode zur Strömungsmessung mit Partikeln. Nun kommt noch das „sens“ hinzu, die Partikel werden quasi gefühlvoll.

    Die Arbeit war eine technische Herausforderung. In tüfteliger Kleinarbeit gelang es dem Team, winzige Kügelchen mit einem Durchmesser von unter 1 Mikrometer herzustellen, die mit einem fluoreszierenden Farbstoff getränkt sind. (Zum Vergleich: Ein menschliches Haar hat einen Durchmesser von etwa 100 Mikrometern.) Dieser Farbstoff leuchtet umso heller, je weniger Sauerstoff vorhanden ist. „Wichtig war es vor allem, dass der Farbstoff sehr schnell auf den Sauerstoffgehalt reagiert. Zudem brauchten wir Kameratechniken, die die Fluoreszenz gut aufnehmen können“, erklärt Mitautor Farooq Moin Jalaluddin vom Bremer Max-Planck-Institut. „Mit der sensPIV-Methode sind wir nun in der Lage, auch in schnellen und kleinräumigen Strömungen mit ausreichender Auflösung zu messen.“

    Nützlich für Medizin, Biologie und vieles mehr

    Die Anwendungsmöglichkeiten der neuen Methode sind vielfältig. Viele Organismen interagieren mit Sauerstoff, und so kann sensPIV helfen, offene Fragen in den Biowissenschaften zu beantworten. Ahmerkamp und seine Kolleginnen und Kollegen nutzten es beispielsweise nicht nur an Korallen, sondern auch um detailliert zu betrachten, wie Sauerstoff durch Sand fließt. Auch kleinskalige Stoffwechselvorgänge an Mikroben, Tieren und Pflanzen können so untersucht werden. In der Mikrofluidik, die untersucht, wie sich Flüssigkeiten auf kleinstem Raum verhalten, und in der Medizin eröffnen sich zahlreiche weitere Anwendungsmöglichkeiten.

    Die erste Idee zu dieser Messmethode entstand schon vor einigen Jahren. „Aber erst durch das tolle internationale Team und unsere enge Zusammenarbeit war es möglich, dass aus der Idee nun eine funktionierende und vielseitig einsetzbare Anwendung wird“, sagt Ahmerkamp. Nun ist das Team gespannt auf die kommenden Einsatzbereiche der Methode. „Die Partikel sind nicht schwer herzustellen, wenn man erst mal weiß, wie’s geht“, so Klaus Koren. Auch an eine Weiterentwicklung der Methode wird schon gedacht: „Gerne würden wir sensPIV auch für andere Substanzen als Sauerstoff sensibilisieren. Klaus Koren ist schon wieder am tüfteln.“ sagt Lars Behrendt.


    Wissenschaftliche Ansprechpartner:

    Dr. Soeren Ahmerkamp
    Abteilung Biogeochemie
    Max-Planck-Institut für Marine Mikrobiologie, Bremen
    Telefon: +49 421 2028-6380
    E-Mail: sahmerka@mpi-bremen.de

    Dr. Fanni Aspetsberger
    Pressereferentin
    Max-Planck-Institut für Marine Mikrobiologie, Bremen
    Telefon: +49 421 2028-9470
    E-Mail: presse@mpi-bremen.de


    Originalpublikation:

    Soeren Ahmerkamp*, Farooq Moin Jalaluddin*, Yuan Cui*, Douglas R. Brumley, Cesar O. Pacherres, Jasmine Berg, Roman Stocker, Marcel MM Kuypers, Klaus Koren, Lars Behrendt: Simultaneous visualization of flow fields and oxygen concentrations to unravel transport and metabolic processes in biological systems. Cell Reports Methods. (* gleichwertiger Beitrag)
    DOI: 10.1016/j.crmeth.2022.100216


    Weitere Informationen:

    https://www.mpi-bremen.de/Page5739.html


    Bilder

    Korallen beim Atmen zuschauen: Eine Spezialkamera zeichnet auf, wie die sauerstoffempfindlichen Partikel an der Korallenoberfläche vorbeifließen.
    Korallen beim Atmen zuschauen: Eine Spezialkamera zeichnet auf, wie die sauerstoffempfindlichen Part ...
    Soeren Ahmerkamp
    Max-Planck-Institut für Marine Mikrobiologie

    Der Strom der neu entwickelten Partikel über die Korallenoberfläche ist klar erkennbar.
    Der Strom der neu entwickelten Partikel über die Korallenoberfläche ist klar erkennbar.
    Soeren Ahmerkamp/
    Max-Planck-Institut für Marine Mikrobiologie


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Geowissenschaften, Musik / Theater, Umwelt / Ökologie
    überregional
    Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).