idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.04.2011 12:51

Forscher ebnen den Weg für elektronische Schaltungen aus Graphen

Pascale Anja Dannenberg Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Graphen gilt wegen seiner physikalischen und chemischen Eigenschaften als eines der vielversprechendsten neuen Materialien. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt ein Verfahren entwickelt, das es erlaubt, Bauelemente aus Graphen mithilfe einer integrierten Elektrode gezielt anzusteuern – eine wichtige Voraussetzung für industrielle Anwendungen. Ihre Forschungsergebnisse haben Prof. Dr. Heiko Weber, Daniel Waldmann, Johannes Jobst, Dr. Michael Krieger vom Lehrstuhl für Angewandte Physik und Prof. Dr. Thomas Seyller und Florian Speck vom Lehrstuhl für Technische Physik jetzt in der renommierten Zeitschrift „nature materials“ publiziert.

    Graphen (mit der Betonung auf der zweiten Silbe) besteht aus einer einzigen Lage von Kohlenstoffatomen, die in einem aus Sechsecken zusammengesetzten Netzwerk so angeordnet sind, dass sie den ersten wahrhaft zweidimensionalen Festkörper bilden. Graphen begründet damit eine neue Klasse von Materialien. Seine Entdeckung im Jahre 2004 hat zu weltweiten Forschungsaktivitäten geführt, die nur mit denen anlässlich der Entdeckung der Hochtemperatursupraleiter vergleichbar sind. 2010 wurde die Entdeckung von Graphen mit dem Nobelpreis für Physik ausgezeichnet. Die Begeisterung der Wissenschaftler für dieses neue Material nährt sich aus den für einen Festkörper völlig neuen elektronischen, optischen und magnetischen Eigenschaften des Graphens. Diese revolutionären Eigenschaften stellen für den Forscher ein faszinierendes Labor neuer Physik dar, das es zu ergründen gilt; sie bergen aber auch ein ungeahntes Potenzial für Anwendungen, die von neuartigen Halbleiterbauelementen über chemische und biologische Sensoren bis zu Quanten-Computern reichen.

    Um das große Potenzial von Graphen für elektronische Anwendungen nutzen zu können, ist die Schichtherstellung in hoher Qualität auf kristallinen Halbleiterscheiben – so genannten Wafern – sehr wichtig. Hier konnten Forscher der FAU einen bedeutenden Beitrag leisten: Prof. Dr. Thomas Seyller hat 2009 ein Verfahren entwickelt, mit dem Graphen in höchster Qualität auf Siliziumkarbid-Kristallen synthetisiert werden kann. Das Verfahren gilt in der Fachwelt als ein wichtiger Schritt auf dem Weg zu einer graphenbasierten Elektronik. Seyller erhielt dafür 2010 den Walter-Schottky-Preis der Deutschen Physikalischen Gesellschaft, den höchsten nationalen Preis für hervorragende Forschungsarbeiten zur Festkörperphysik.

    Der nächste wichtige Schritt ist es, ausgehend von Graphen-Wafern Bauelemente herzustellen. Insbesondere gilt es, die Graphenschichten für elektronische Anwendungen ansteuerbar zu machen. Hier kommt das Trägermaterial ins Spiel: Siliziumkarbid ist ein Halbleiter, der durch geschickte Manipulation als integrierte Ansteuerelektrode verwendet werden kann. Das ist Professor Dr. Heiko Weber und seinem Team jetzt gelungen. Die FAU-Forscher haben nicht nur Musterbauelemente hergestellt, sondern konnten auch die physikalischen Effekte en détail erklären, die bei Verwendung einer solchen Elektrode auftreten können. Mit diesem Wissen ist es nun möglich, optimale integrierte Elektroden für Graphen für die verschiedensten Anwendungsbereiche maßzuschneidern. Der große Vorteil einer solchen Elektrode liegt auf der Hand: die Graphenschicht an der Oberfläche bleibt frei zugänglich. Dies eröffnet völlig neue Möglichkeiten sowohl in der Forschung als auch in der Anwendung, z. B. für ultra-empfindliche Sensoren, die sogar einzelne Atome detektieren können.

    An diesen und weiteren Fragestellungen arbeiten die Erlanger Forscher im Rahmen des Exzellenzclusters „Engineering of Advanced Materials" http://(www.eam.uni-erlangen.de) an der Friedrich-Alexander-Universität Erlangen-Nürnberg.

    Weitere Informationen für die Medien:

    Prof. Dr. Heiko Weber
    Tel. 09131-85-28421
    heiko.weber@physik.uni-erlangen.de


    Bilder

    Graphen, ein zweidimensionales Bienenwabengitter aus Kohlenstoffatomen, wird auf einen Siliziumkarbid-Kristall (grau) synthetisiert. Durch gezielte Manipulation der Kristalleigenschaften wird eine Ansteuerelektrode (blau) im Siliziumkarbid erzeugt, mit der – über Kontakte aus Gold – der Stromfluss durch die Graphenschicht gesteuert werden kann.
    Graphen, ein zweidimensionales Bienenwabengitter aus Kohlenstoffatomen, wird auf einen Siliziumkarbi ...
    Grafik: J. Jobst, J. Lottes, M. Krieger
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Elektrotechnik, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Graphen, ein zweidimensionales Bienenwabengitter aus Kohlenstoffatomen, wird auf einen Siliziumkarbid-Kristall (grau) synthetisiert. Durch gezielte Manipulation der Kristalleigenschaften wird eine Ansteuerelektrode (blau) im Siliziumkarbid erzeugt, mit der – über Kontakte aus Gold – der Stromfluss durch die Graphenschicht gesteuert werden kann.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).