Frankfurter Chemiker ist es gelungen, einen Laborexoten zu untersuchen und damit einen Beitrag zum Verständnis der chemischen Bindung zu leisten. Ihre Erkenntnisse zum Elektronentransport in Bor-haltigen organischen Molekülen ist außerdem praxisrelevant.
FRANKFURT. Der Nobelpreisträger Linus Pauling hat schon 1931 darauf hingewiesen, dass zwei Wasserstoffatome zusammengehalten werden können, wenn sie sich lediglich ein Elektron teilen (Einelektron-Zweizentrenbindung). Experimentell sind solche Systeme nur schwer zugänglich. Chemikern der Goethe-Universität ist es nun gelungen, eine Verbindung herzustellen, die eine stabile Bor•Bor Einelektron-Zweizentrenbindung enthält. Die in der Angewandten Chemie publizierten Ergebnisse leisten nicht nur einen Beitrag zum fundamentalen Verständnis der chemischen Bindung, sondern sind auch anwendungsrelevant: Bor-haltige organische Moleküle gelten als Materialien der nächsten Generation für Akkumulatoren, Solarzellen und Organische Leuchtdioden (OLEDs).
„Das Konzept der Elektronenpaarbindung, wie sie im elementaren Wasserstoff, H2, vorliegt, ist jedem Naturwissenschaftler geläufig, während Spezies mit Einelektron-Zweizentrenbindung wie das Wasserstoff-Radikalkation allenfalls als Laborkuriositäten wahrgenommen werden“, so Prof. Matthias Wagner vom Institut für Anorganische und Analytische Chemie der Goethe-Universität. Das liegt daran, dass die Synthese dieser Systeme und ihre Isolierung bei Raumtemperatur äußerst schwierig sind.
Die Frankfurter Arbeitsgruppen von Prof. Matthias Wagner und Prof. Max Holthausen konnten die Schwierigkeiten überwinden, indem sie sich zu Nutze machten, dass man das Bor•Bor-Fragment - im Gegensatz zum Wasserstoff-Radikalkation - in ein größeres Molekül integrieren kann. Dadurch ist es wie in einem Käfig, abgeschirmt. Boratome nehmen bereitwillig Elektronen auf. Positioniert man daher zwei von ihnen in räumlicher Nähe innerhalb einer starren Molekülarchitektur, so lässt sich anschließend ein Elektron gezielt zwischen die beiden Boratome einbetten, wo es von ihnen festgehalten wird.
Erste Hinweise, dass sich eine Bor•Bor Einelektron-Zweizentrenbindung als Folge der Injektion des Elektrons gebildet hatte, ergab die Röntgenstrukturanalyse am Einkristall. Sie zeigte eine signifikante Verkürzung des Bor-Bor-Abstands. Einen entscheidenden Beitrag zur Identifizierung der Einelektron-Zweizentrenbindung lieferte schließlich die quantenchemische Analyse der Elektronendichte, die das einzelne Elektron als fixierendes Bindeglied zwischen den beiden Bor-Atomen zweifelsfrei kennzeichnet.
Von praktischer Bedeutung sind die Untersuchungen vor allem deshalb, weil Bor-haltige organische Moleküle sich derzeit steigenden Interesses in den Materialwissenschaften erfreuen. Will man sie für Akkumulatoren, Solarzellen oder organische Leuchtdioden einsetzen, spielt der Elektronentransport innerhalb dieser Materialien eine wesentliche Rolle. „Dementsprechend stellt sich auch die Frage, unter welchen Umständen Elektronen zwischen Boratomen eingefangen werden und auf diese Weise den Ladungstransport behindern“, erläutert Max Holthausen.
Publikation:
Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie.201402158 http://onlinelibrary.wiley.com/doi/10.1002/ange.201402158/pdf
Informationen: Prof. Matthias Wagner, Institut für Anorganische und Analytische Chemie, Campus Riedberg, Tel.: (069)-798-29156, Matthias.Wagner@chemie.uni-frankfurt.de
Prof. Max Holthausen, Institut für Anorganische und Analytische Chemie, Campus Riedberg, Tel.: (069)-798-29412, Max.Holthausen@chemie.uni-frankfurt.de
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 2014 feiert sie ihren 100. Geburtstag. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.“
Mehr Informationen unter www2.uni-frankfurt.de/gu100
Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de
Frankfurter Chemiker konnten ein Bor•Bor-Fragment untersuchen, indem sie es in einen Käfig einsperrt ...
Foto: Uwe Dettmar
None
Merkmale dieser Pressemitteilung:
Journalisten
Chemie
überregional
Forschungsergebnisse
Deutsch
Frankfurter Chemiker konnten ein Bor•Bor-Fragment untersuchen, indem sie es in einen Käfig einsperrt ...
Foto: Uwe Dettmar
None
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).