idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.05.2014 10:29

Wie Wälder zur Wolkenbildung beitragen? CLOUD am CERN klärt erste Phase der Wolkenentstehung

Veronika Schallhart Öffentlichkeitsarbeit
Universität Wien

    Inwiefern Wolken das Klima tatsächlich beeinflussen, steht nach wie vor nicht fest. Vielleicht auch deshalb, weil viele Details der Wolkenbildung noch ungeklärt sind. Seit Jahren beteiligen sich AerosolphysikerInnen der Universität Wien an dem internationalen CLOUD-Experiment am CERN in Genf, um den Wolkenentstehungsprozess zu analysieren. Die WissenschafterInnen haben jetzt herausgefunden, dass die Emissionen von Kiefernwäldern eine Art "Klebstoff" für die Bildung von Wolkenkondensationskernen liefern und dass Ionen zur Stabilisierung beitragen. Die neuen Ergebnisse erscheinen aktuell in der renommierten Fachzeitschrift Science.

    Im letzten Bericht des "Intergovernmental Panel on Climate Change" (IPCC) wurde darauf hingewiesen, dass in heutigen Klimamodellen Wolken nach wie vor der größte Unsicherheitsfaktor sind. Voraussetzung, um die Auswirkungen von Wolken auf das Klima besser modellieren zu können, ist es, die Komplexität der Wolkenbildung zu verstehen. Die neue Studie im Rahmen des CLOUD-Experiments (Cosmics Leaving OUtdoor Droplets) am CERN gibt nun Aufschluss über den ersten Schritt der Wolkenbildung und trägt damit zu einem besseren Verständnis der Wolken-Klima-Verbindung bei. Mit der CLOUD-Kammer können Wolkenbildungs-Experimente präzise durchgeführt und die Zugabe von Chemikalien genau gemessen werden. Auch Parameter wie Temperatur, Druck und Feuchtigkeit können leicht verändert werden. Eine solche Steuerung der Umgebungsbedingungen ist im Feldeinsatz unmöglich.

    Wolkentröpfchen entstehen, wenn Wasserdampf in der Atmosphäre an kleinen Teilchen von ca. 50 bis 100 nm Durchmesser kondensiert. Diese sogenannten Wolkenkondensationskeime können von natürlichen Quellen oder menschlichen Aktivitäten kommen: Sie bilden sich in der Atmosphäre häufig aus Stoffen, die ursprünglich als gasförmige Schadstoffe abgesondert wurden. Diese Umwandlung von Gasen in feste oder flüssige Partikel – die Keimbildung – kann die Wolkenentstehung wesentlich beeinflussen. Bis heute ist nicht restlos geklärt, welche Komponenten benötigt werden, damit die Teilchen stabil und groß genug – und tatsächlich "Wolkenkerne" werden.

    Schwefelsäure allein kann nicht die Arbeit machen

    Auf der Suche nach des Rätsels Lösung in Sachen Wolkenkeimbildung konnten die ForscherInnen Schwefelsäure als wichtige Zutat ausfindig machen. Die Konzentration der Säure korreliert nämlich mit der Rate der Partikelbildung. Schwefelsäure spielt in der Keimbildung aufgrund des niedrigen Dampfdrucks – d.h. ihres hohen Siedepunkts – eine wichtige Rolle. Dadurch können diese Moleküle der verstärkten Abdampfung aufgrund der anfänglich großen Oberflächenkrümmung der Teilchen entgegenwirken und es so stabilisieren. Es stellte sich allerdings heraus, dass die "pickigen" Schwefelsäure-Moleküle einen zusätzlichen Kleber benötigen, damit diese Cluster zusammenhalten. Gleichzeitig scheint Schwefelsäure jedoch nur ein Puzzle-Teil zu sein, denn Versuche, die Keimbildungsraten als Folge der Schwefelsäure-Konzentration theoretisch zu erklären, scheiterten.

    Der neue Kleber aus dem Wald

    Die neue Studie zeigt nun, wie diese "Verklebung" funktioniert. Wissenschafter haben beobachtet, dass Schwefelsäure-Cluster stabiler gegen Verdunstung sind und sich leichter zu Keimen entwickeln, wenn sie bestimmte hoch oxidierende, organische Dämpfe biologischen Ursprungs in der Atmosphäre integrieren, und zwar bei extrem niedrigen Konzentrationen. Die WissenschafterInnen fanden heraus, dass die stabilen Keime Oxidationsprodukte von Alpha-Pinen – einem Molekül, das Kiefernwäldern den charakteristischen Geruch gibt – enthalten. Alpha-Pinen wird vor allem in der warmen Jahreszeit von Bäumen abgesondert und in der Atmosphäre oxidiert.

    "Wir haben Wolkenbildungsversuche mit Schwefelsäure und diesem biogenen organischen Oxid in der CLOUD-Kammer gemacht und konnten dabei einen überdurchschnittlichen Anstieg der Keimbildungsrate beobachten. Der Nachweis, dass hoch oxidierende organische Moleküle an der Keimbildung beteiligt waren, gelang auf zwei Arten: Einerseits experimentell mit präzisen Massenspektroskopie-Messungen der Cluster, andererseits theoretisch durch quantenmechanische Berechnungen, die belegen, dass ein Hybrid-Cluster tatsächlich weniger schnell verdampft als ein reiner 'Schwefelsäure-Cluster'", erklärt Paul E. Wagner, der bis 2013 als Aerosolphysiker an der Universität Wien tätig war und die Wiener Gruppe bei CLOUD leitete. Seine Arbeitsgruppe war bei der aktuellen Studie maßgeblich an den Messungen der (Aerosol-)Teilchenkonzentrationen beteiligt. Sie entwickelte auch das in der CLOUD-Kammer integrierte Glasfaser-UV-Lichtsystem, mit dessen Hilfe die sonst oft störenden thermischen Einflüsse der UV-Beleuchtung von der Mess-Zone entkoppelt werden und eine präzise Kontrolle der Photochemie in diesen Experimenten ermöglicht wird.

    Ionen spielen eine untergeordnete Rolle

    Die WissenschafterInnen untersuchten auch eine weitere Methode, um die Cluster-Stabilität und damit die Keimbildung zu erhöhen. Sie versuchten herauszufinden, ob geladene Moleküle (Ionen), die in der Atmosphäre als Folge kosmischer Strahlung erzeugt werden, eine stärkere Kleberwirkung als neutrale Keime haben. "Wir konnten beobachten, dass Ionen zur Stabilisierung beitragen, aber nur bei niedrigen Konzentrationen von Schwefelsäure und organischen Oxiden", so Paul E. Wagner.

    Bessere Modellvorhersagen

    Als ein Forschungsergebnis entstand ein globales Aerosol-Bildung-Modell. Mit diesem hofften die WissenschafterInnen, die Keimbildung mit seinen saisonalen Schwankungen real beschreiben zu können. Und tatsächlich – mit dem neuen Modell konnten die saisonalen Höhen und Tiefen der Keimbildung im Laufe eines Jahres vorhergesagt werden. Damit ist bestätigt, dass die Emissionen aus Wäldern eine grundlegende Rolle in der ersten Phase der Wolkenbildung spielen. Damit Partikel tatsächlich Wolkenkondensationskeime werden, müssen sie eine Größe von 50 bis 100 Nanometern erreichen. Da für die neue Studie kleinere Keime herangezogen wurden, ist es verfrüht zu behaupten, dass nun die Wolkenbildung als Ganzes geklärt ist. Darüber hinaus konnte bei den Experimenten nicht die komplette Bandbreite möglicher Wetterbedingungen berücksichtigt werden.

    Publikation:
    Oxidation Products of Biogenic Emissions Contritbute to Nucleation of Atmospheric Particles: Die Studie wurde von Wissenschaftlern des Paul-Scherrer-Instituts (PSI) geführt, von der Universität Wien waren beteiligt: Agnieszka Kupc, Aron Vrtala und Paul E. Wagner, Science. 16. Mai 2014. DOI: 10.1126/science.1243527.

    Wissenschaftlicher Kontakt
    Ao. Univ.-Prof. i.R. Dr. Dr. h.c. Paul Wagner
    Aerosolphysik und Umweltphysik
    Universität Wien
    1090 Wien, Boltzmanngasse 5
    T +43-1-4277-511 74
    M +43-664-60277-511 74
    paul.wagner@univie.ac.at

    Rückfragehinweis
    Mag. Veronika Schallhart
    Pressebüro der Universität Wien
    Forschung und Lehre
    1010 Wien, Universitätsring 1
    T +43-1-4277-175 30
    M +43-664-602 77-175 30
    veronika.schallhart@univie.ac.at

    Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at


    Bilder

    CLOUD-Kammer mit Messgeräten
    CLOUD-Kammer mit Messgeräten
    (Copyright: Paul Winkler)
    None

    CLOUD-Kammer in der CERN East Hall
    CLOUD-Kammer in der CERN East Hall
    (Copyright: Paul Winkler)
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Meer / Klima, Physik / Astronomie, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Deutsch


     

    CLOUD-Kammer mit Messgeräten


    Zum Download

    x

    CLOUD-Kammer in der CERN East Hall


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).