idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.12.2014 17:00

Möglicher Lesekopf für Quantencomputer: Graphenschicht liest optische Information aus Nanodiamanten

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Aus Stickstoff-Fehlstellen-Zentren in Diamanten ließen sich wichtige Komponenten eines Quantencomputers bauen. Doch bisher war es nicht möglich, die optisch ins System „geschriebene“ Information elektronisch wieder auszulesen. Mit Hilfe von Graphenschichten hat ein Wissenschaftlerteam um Professor Alexander Holleitner von der Technischen Universität München (TUM) nun eine solche Leseeinheit realisiert.

    Idealer Weise besteht ein Diamant aus reinem Kohlenstoff. Doch in der Natur sind immer auch kleine Verunreinigungen darin zu finden. Am besten untersucht sind Doppelfehlstellen, die aus einem Stickstoffatom und einer Leerstelle bestehen. Sie könnten als hochempfindliche Sensoren oder als Registerbausteine für Quantencomputer eingesetzt werden – doch bisher gab es keinen Weg, die optisch hinein gesteckte Information elektrisch wieder auszulesen.

    Ein Team unter Leitung von Professor Alexander Holleitner, Physiker an der TU München und Frank Koppens, Physikprofessor am Institut de Ciencies Fotoniques nahe Barcelona, hat nun eine solche Auslesemöglichkeit geschaffen. Basis ist eine direkte Energieübertragung von Fehlstellen in Nanodiamanten auf eine unmittelbar benachbarte Graphenschicht.

    Strahlungsloser Energietransfer

    Bestrahlt man einen solchen Nanodiamanten mit Laserlicht, so hebt ein Licht-Photon im Stickstoff-Fehlstellen-Zentrum ein Elektron von seinem Normalzustand in einen angeregten Zustand. „Das System aus dem angeregten Elektron und dem verlassenen Grundzustand kann man als Dipol auffassen“, sagt Professor Alexander Holleitner. „Dieser Dipol erzeugt in der nahegelegenen Graphenschicht wieder einen Dipol aus einem Elektron und einer Leerstelle“.

    Doch während in den rund 100 Nanometer großen Diamanten die einzelnen Fehlstellen-Zentren voneinander isoliert sind, ist die Graphenschicht elektrisch leitend. Zwei Goldelektroden erfassen die erzeugte Ladung und machen sie elektronisch messbar.

    Elektronische Detektion im Pikosekundenbereich

    Wesentlich für diesen Versuchsaufbau ist, dass die Messung extrem schnell geschieht.
    Denn nach wenigen Milliardstel Sekunden würde sonst das erzeugte Elektron-Loch-Paar wieder verschwinden. Doch die in Holleitners Labor entwickelte Technik erlaubt Messungen im Pikosekundenbereich (Billionstel Sekunden). Damit können die Wissenschaftler die Vorgänge genau verfolgen.

    „Prinzipiell müsste unsere Technik auch mit Farbstoffmolekülen funktionieren“, sagt Doktorand Andreas Brenneis, der zusammen mit Louis Gaudreau die Messungen durchgeführt hat. „Ein Diamant enthält rund 500 solcher Fehlstellen, aber die Methode
    ist so empfindlich, dass wir auch einzelne Farbstoffmoleküle messen könnten“.

    Aufgrund der extrem schnellen Schaltgeschwindigkeit der von den Wissenschaftlern entwickelten Nanoschaltkreise könnten mit dieser Technik aufgebaute Sensoren nicht nur extrem schnelle Vorgänge messen sondern würden, eingebaut in einem zukünftigen Quantencomputer auch extrem hohe Taktraten bis in den Terahertz-Bereich ermöglichen.

    Die Arbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich, NIM und SFB 631), des European Research Councils (ERC Grant NanoREAL, CarbonLight), der Fundacio Cellex Barcelona, des Marie-Curie International Fellowship COFUND sowie des ICFOnest Programms und des Center for NanoScience (CeNS) München. An der Publikation wirkten Physiker der TU München, der Universität Augsburg, des Walther-Meißner-Instituts der Bayerischen Akademie der Wissenschaften und des ICFO-Institut de Ciencies Fotoniques in Castelldefels nahe Barcelona mit.

    Publikation:

    Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene,
    Andreas Brenneis, Louis Gaudreau, Max Seifert, Helmut Karl, Martin S. Brandt, Hans Huebl, Jose A. Garrido, Frank H. L. Koppens and Alexander W. Holleitner
    Nature Nanotechnology, Advanced online publication, 1. Dezember 2014 – DOI: 10.1038/nnano.2014.276

    Kontakt:

    Prof. Dr. Alexander W. Holleitner
    Technische Universität München
    Walter Schottky Institut – Zentrum für Nanotechnologie und Nanomaterialien
    Am Coulombwall 4a, 85748 Garching, Germany
    Tel.: +49 89 289 11575 – E-Mail: holleitner@wsi.tum.de


    Weitere Informationen:

    http://pubs.acs.org/doi/abs/10.1038/nnano.2014.276 Originalpublikation
    http://www.wsi.tum.de/Research/HolleitnergroupE24/tabid/166/Default.aspx Website der Arbeitsgruppe


    Bilder

    Zukunftsvision Quantencomputer mit Chips aus Diamant und Graphen
    Zukunftsvision Quantencomputer mit Chips aus Diamant und Graphen
    Quelle: Grafik: Christian Hohmann / Nanosystems Initiative Munich (NIM)

    Laboraufbau zum Vermessen der Wechselwirkungen zwischen Graphen und Nanodiamanten mit eingebauten Stickstoff-Fehlstellen-Zentren
    Laboraufbau zum Vermessen der Wechselwirkungen zwischen Graphen und Nanodiamanten mit eingebauten St ...
    Quelle: Bild: Astrid Eckert / TUM


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Elektrotechnik, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Zukunftsvision Quantencomputer mit Chips aus Diamant und Graphen


    Zum Download

    x

    Laboraufbau zum Vermessen der Wechselwirkungen zwischen Graphen und Nanodiamanten mit eingebauten Stickstoff-Fehlstellen-Zentren


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).