idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
30.05.2016 12:55

Der richtige Dreh für den perfekten Kristall

Stephan Brodicky Öffentlichkeitsarbeit
Universität Wien

    Utl. Physiker entwickeln neue Methode der Kristallerzeugung

    Egal ob in Metallkunde, Gemmologie (Edelsteinkunde) oder auch Elektrotechnik, die Anwendungsgebiete von Kristallen sind breit gefächert. Ein Team um Christos Likos von der Fakultät für Physik der Universität Wien hat nun in Zusammenarbeit mit dem National Institute of Standards and Technology (NIST, USA) und der Princeton University (USA) eine neue Methode entwickelt, die das Wachstum von großen, periodischen Kristallen verbessert. Die Ergebnisse dazu wurden aktuell im Fachmagazin ACS Nano publiziert.

    Kristalle sind Festkörper, deren mikroskopisch kleine Bausteine regelmäßig in einer periodischen Struktur angeordnet sind. Viele der Eigenschaften, die Kristalle so nützlich machen, basieren auf der detaillierten und strukturierten Anordnung ihrer Bestandteile. Diese regelmäßige Kristallstruktur wirkt sich wiederum in hohem Maße auf das Zusammenspiel der einzelnen Bausteine aus. In molekularen und atomaren Kristallen ist die Kraft zwischen den Bausteinen von Natur aus vorgegeben. Die einzige Möglichkeit die Kristallstruktur umzuwandeln besteht entweder darin, die äußeren Bedingungen (Temperatur, Druck, etc.) zu verändern, oder die Partikel selbst auszutauschen.

    Im Gegensatz dazu ist es möglich, im Bereich der Physik der Weichen Materie, in dem die Bausteine um ein Vielfaches größer und komplexer sind als Atome, Bausteine mit extrem anpassungsfähigen Eigenschaften zu konzipieren und anzufertigen. Darauf basierend haben Wissenschafter unter großem Aufwand an der Synthese von Kolloiden gearbeitet, die selbst organisiert hochsymmetrische Strukturen mit den technologisch relevanten Eigenschaften bilden. Als Beispiel gelten spezielle Kristallgitter, die interessante optische Eigenschaften aufweisen – die so genannten Photonischen Kristalle.

    Ein Beispiel für einen natürlichen Photonischen Kristall ist der Opal, dessen faszinierendes Farbenspiel auf die Art zurückzuführen ist, wie das Licht mit den kleinen Strukturen der regelmäßig angeordneten, kolloidalen Teilchen interagiert. Das farbenprächtige Schillern des Edelopals ist auf die Präsenz einer Vielzahl kleiner Kristalle, so genannter Kristallite, zurückzuführen, die sich mit unterschiedlicher Orientierung anordnen. "Zusätzlich ist die Anordnung in den kolloidalen Kristallen oft durch Polymorphologie gestört: Verschiedenste Strukturen sind durch vergleichbare thermodynamische Stabilität charakterisiert, die es erschweren eine bestimmte Form absichtlich zu erzeugen", erklärt Christos Likos von der Fakultät für Physik der Universität Wien.

    Das daraus resultierende Fehlen der weitreichenden Anordnungen ist für viele Anwendungen von Nachteil. Entsprechend haben sich die Wissenschafter zur Aufgabe gemacht, Strategien zu entwickeln, die das Wachsen von großen, monokristallinen Exemplaren verbessern. Mittels Computersimulationen ist es nun gelungen eine neue Methode zu entwickeln, die es ermöglicht, technologisch relevante offene Kristalle zu bilden, die nicht polymorph sind. "Das System kristallisiert spontan in einer Mischung von Kristallen. Die Kolloide fügen sich dabei so zusammen, dass die konkurrierenden Strukturen unterschiedliche Hohlraumverteilungen aufweisen. Wir nutzen das aus, indem wir die Größe von zusätzlich hinzugefügten Polymeren so anpassen, dass diese einzig und allein mit der Leerraumsymmetrie des gewünschten Kristalls interagieren und sich gegen seine Konkurrenten stabilisieren", so Lise-Meitner-Stipendiat Lorenzo Rovigatti, Mitglied der Gruppe um Christos Likos.

    Die Ergebnisse des Forschungsteams dienen nicht nur dazu, Alternativen zu bereits existierenden Ansätzen aufzuzeigen, sondern auch um in naher Zukunft die experimentelle Umsetzung von weitreichend geordneten offenen kolloidalen Kristallen zu ermöglichen.

    Publikation in "ACS-Nano"
    Nathan A. Mahynski, Lorenzo Rovigatti, Christos N. Likos, and Athanassios Z. Panagiotopoulos
    DOI 10.1021/acsnano.6b01854

    Das Projekt wurde vom Österreichischen Wissenschaftsfonds (FWF) durch das Lise-Meitner Stipendium M 1650-N27 unterstützt.

    Wissenschaftlicher Kontakt
    Univ.-Prof. Dipl.-Ing. Dr. Christos Likos
    Fakultät für Physik
    Universität Wien
    1090 Wien, Boltzmanngasse 5
    T +43-1-4277-732 30
    M +43-664-60277-732 30
    christos.likos@univie.ac.at

    Rückfragehinweis
    Stephan Brodicky
    Pressebüro der Universität Wien
    Forschung und Lehre
    1010 Wien, Universitätsring 1
    T +43-1-4277-175 41
    stephan.brodicky@univie.ac.at

    Offen für Neues. Seit 1365.
    Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 93.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at


    Bilder

    Die Wissenschafter konnten zeigen, dass eine langreichweitige Ordnung durch die Verwendung einer Mischung von Kolloiden und polymerartigen Teilchen wiederhergestellt werden kann.
    Die Wissenschafter konnten zeigen, dass eine langreichweitige Ordnung durch die Verwendung einer Mis ...
    Copyright: Christos Likos Universität Wien
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Chemie, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Die Wissenschafter konnten zeigen, dass eine langreichweitige Ordnung durch die Verwendung einer Mischung von Kolloiden und polymerartigen Teilchen wiederhergestellt werden kann.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).