idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
12.07.2016 10:12

Stammzellen unter Zugzwang

Gabriele Rutzen Presse und Kommunikation
Universität zu Köln

    Ein Team von Wissenschaftler/innen um Sara Wickström, Arbeitsgruppenleiterin am CECAD, dem Exzellenzcluster für die Erforschung altersassoziierter Erkrankungen an der Universität zu Köln, hat neue Einblicke gewonnen, wie Stammzellen fühlen und auf externe mechanische Reize reagieren. Dies geschieht durch eine Veränderung der DNA im Zellkern und einer daraus folgenden veränderten Expression von Genen, die für die Differenzierung der Stammzellen benötigt werden.

    Alle Zellen haben den identischen genetischen Code, egal ob es sich um Haut- oder Gehirnzellen handelt. Diese Zellen sind aber völlig verschiedenen Umgebungen und mechanischen Belastungen ausgesetzt. Gehirnzellen sind zum Beispiel sehr weich, Knochen hingegen extrem hart. Frühere Forschungen haben gezeigt, dass Zellen auf externe Kräfte mit Änderungen in ihrer Struktur und Genexpression reagieren können, um sich ihrer Umgebung besser anzupassen und weiterhin ihre Funktion aufrecht erhalten zu können. Die molekularen Mechanismen dieser Regulierung sind aber bisher unklar.

    “Unsere Haut beschützt uns gegen unsere Umgebung und ist dabei dauerhaft toxischen Substanzen, UV-Strahlung und mechanischer Belastung ausgesetzt. Daher ist es besonders für Hautzellen sehr wichtig, auf äußere Kräfte reagieren zu können”, so Huy Quang Le, der leitende Wissenschaftler der Studie, die am Max-Planck-Institut für die Biologie des Alterns, einem CECAD-Kooperationspartner, durchgeführt wurde. Die Ergebnisse sind in Nature Cell Biology erschienen.

    Um zu untersuchen, wie Hautzellen auf Belastung reagieren, nutzten Le und seine Kollegen eine spezielle mechanische Vorrichtung, die Stammzellkulturen von Hautzellen einer Dehnung aussetzte, wie sie auch im Gewebe vorkommt. Die Genexpression der gedehnten Zellen wurden mithilfe von Hochdurchsatzsequenzierung (next-generation-sequencing) analysiert. Hier konnte gezeigt werden, dass tausende Gene herunter reguliert waren, aber nur sehr wenige Gene eine gesteigerte Expression hatten. Weitere Forschung zeigte, dass die Dehnung weitreichend veränderte, wie die DNA im Zellkern vorliegt. Daraus resultiert eine weitreichende Unterdrückung der transkriptionalen Aktivität der Zelle, was bedeutet, dass weniger DNA in messengerRNA zur Herstellung von Proteinen kopiert wird. Damit sich eine Stammzelle differenzieren kann, müssen viele Gene transkribiert werden, damit die Zelle ihre spezielle Architektur und Funktion erhält. Als Resultat der mechanischen Dehnung konnten sich die Zellen nicht differenzieren. “Es war aufregend festzustellen, dass wir die strukturelle Organisation der DNA einfach durch eine mechanischen Reizung der Stammzellen verändern konnten”, so Sara Wickström.

    Bei weiterer Untersuchung der zellulären Mechanismen der neu geordneten DNA fanden Le und seine Kollegen heraus, dass die mechanischen Kräfte an der Kernhülle registriert werden, einer Struktur, die die DNA umgibt und vom Rest der Zelle trennt. Eines der Schlüsselproteine in diesem Prozess ist Emerin, welches den Kern und die DNA mit dem Cytoskelett verbindet. Dieses Skelett ist die Struktur, die der Zelle Stabilität gibt. Das ist daher interessant, weil Emerin in mutierter Form bei der Krankheit Emery-Dreifuss-Muskeldystrophie vorliegen kann. Patienten, die an dieser Erkrankung leiden, weisen eine Degeneration mechanisch belasteter Gewebe auf, zum Beispiel in Skelettmuskeln, dem Herz oder der Haut. “Der genaue Mechanismus dieser Krankheit ist noch unbekannt und uns fehlen effektive Behandlungsmöglichkeiten. Ein großes Zukunftsziel unseres Labors ist es zu verstehen, ob der in unserer Studie entdeckte Mechanismus eine Rolle in der Pathogenese der Krankheit spielt”, sagt Sara Wickström. Weil sich die mechanischen Eigenschaften von Geweben auch mit dem Alter ändern, besteht ein weiteres Ziel darin zu verstehen, wie gealterte Stammzellen das Einwirken externer Kräfte wahrnehmen und inwieweit Veränderungen in den mechanischen Eigenschaften des umgebenden Gewebes sich auf diese Wahrnehmung auswirken.

    Originalpublikation: “Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment” in Nature Cell Biology
    Digital object identifier (DOI): 10.1038/ncb3387

    Kontakt: Dr. Sara Wickström
    Max Planck Research Group Leader, Max Planck Institute für die Biologie des Alterns
    +49 221 70 770
    wickstroem@age.mpg.de
    Max-Planck-Institut für die Biologie des Alterns
    Joseph-Stelzmann Str. 9b
    50931 Köln


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).