idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
15.11.2018 16:49

Rasende Elektronen unter Kontrolle

Dr. Susanne Langer Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

    Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der wichtigsten Komponenten, sie ist verantwortlich für die Daten- und Signalübertragung. Die Elektronenströme mit Lichtwellen statt wie bisher über Spannungssignale zu kontrollieren, könnte diesen Traum realisieren. Doch bisher hat es sich als schwierig herausgestellt, Elektronenströme in Metallen zu steuern. Denn Metalle reflektieren Lichtstrahlen, die Elektronen im Inneren können daher nicht durch die Lichtwelle beeinflusst werden.

    FAU-Physiker greifen daher auf Graphen zurück: ein Halbmetall, das aus nur einer einzigen Lage Kohlenstoff besteht und damit so dünn ist, dass genug Licht einfällt, um Elektronen in Bewegung zu versetzen. Damit war es den Physikern vom Lehrstuhl für Laserphysik bereits in einer früheren Studie gelungen, mithilfe eines sehr kurzen Laserpulses ein elektrisches Signal zu erzeugen und das auf einer Zeitskala von nur einer Femtosekunde. Das entspricht dem millionsten Teil einer milliardstel Sekunde. Unter diesen extremen Zeitskalen offenbaren Elektronen ihre Quantennatur: Sie verhalten sich wie eine Welle. Angetrieben vom Lichtfeld, also dem Laserpuls, gleitet die Elektronenwelle durch das Material.

    Unter Kontrolle

    In der aktuellen Studie sind die Forscher noch einen Schritt weitergegangen. Sie haben einen zweiten Laserpuls auf diese licht-getriebene Welle gerichtet. Dieser zweite Puls ermöglicht es, die Elektronenwelle nun in zwei Dimensionen durch das Material gleiten zu lassen. Mithilfe des zweiten Laserpuls kann die Elektronenwelle abgelenkt, beschleunigt oder sogar ihre Richtung geändert werden. Abhängig vom exakten Zeitpunkt des zweiten Pulses, seiner Stärke und seiner Richtung, können somit Informationen auf diese Welle übertragen werden. Man kann sogar noch einen Schritt weitergehen: „Stellen Sie sich die Elektronenwelle als Wasserwelle vor. Wasserwellen können sich an einem Hindernis aufspalten und wenn sie am Ende des Hindernisses wieder zusammenlaufen interferieren. Je nachdem, wie die beiden Teilwellen zueinander im Verhältnis stehen, können sie sich verstärken oder auslöschen. Mit dem zweiten Laserpuls können wir gezielt die einzelnen Teilwellen modifizieren und damit deren Interferenz kontrollieren“, erklärt Christian Heide vom Lehrstuhl für Laserphysik. „Generell ist es sehr schwierig, Quanten-Phänomene, wie hier die Welleneigenschaft der Elektronen, zu kontrollieren. Das liegt daran, dass es sehr schwer ist, so eine Elektronenwelle in einem Material aufrecht zu erhalten, da diese zum Beispiel mit anderen Elektronen streut und damit ihre Welleneigenschaft verliert. Typischerweise werden dafür Experimente bei extrem tiefen Temperaturen durchgeführt. Wir können diese Experimente nun auch an Raumtemperatur durchführen, da wir die Elektronen über Laserpulse so schnell kontrollieren können, dass gar keine Zeit für Streuprozesse mit anderen Elektronen ist. Daraus können wir viele neue physikalische Prozesse erforschen, die uns vorher nicht zugänglich waren.“

    Damit sind die Wissenschaftler der durch Lichtwellen gesteuerten Elektronik einen großen Schritt nähergekommen. In den nächsten Jahren werden sie untersuchen, ob sich die Elektronen auch in anderen zweidimensionalen Materialien kontrollieren lassen. Heide: „Vielleicht können wir aber auch über Materialforschung die Eigenschaften der Materialien so verändern, dass sich schon bald kleine lichtgesteuerte Transistoren bauen lassen.“


    Wissenschaftliche Ansprechpartner:

    Weitere Informationen:
    Prof. Dr. Peter Hommelhoff
    Peter.hommelhoff@fau.de
    Tel.: 09131/85-27090

    Christian Heide
    christian.heide@fau.de


    Originalpublikation:

    Ihre Ergebnisse haben die Wissenschaftler im Journal Physical Review Letters veröffentlicht: 10.1103/PhysRevLett.121.207401


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Das treibende Laserfeld (rot) schüttelt Elektronen in Graphen auf ultrakurzen Zeitskalen (violett und blau). Ein zweiter Laserpuls (grün) kann diese Welle steuern und damit die Stromrichtung vorgeben.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay