Big Data-Studie zu Multipler Sklerose auf dem Münchner „Digital Health Summit“

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
29.11.2018 09:13

Big Data-Studie zu Multipler Sklerose auf dem Münchner „Digital Health Summit“

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    In Verbindung mit Daten anderer Patienten kann unsere persönliche digitale Krankengeschichte dabei helfen, den Verlauf und Therapieerfolg einer Krankheit zuverlässiger vorherzusagen. Vor allem für Erkrankungen wie der Multiplen Sklerose (MS), die sehr unterschiedlich verlaufen kann, ist das eine große Chance. Das Konsortium DIFUTURE unter der Leitung der Technischen Universität München (TUM) präsentiert seine Arbeiten auf dem Münchner „Digital Health Summit 2018“, der von 29. bis 30. November stattfindet.

    2015 sind MS-Erkrankungen bayernweit 60 Prozent häufiger aufgetreten als noch neun Jahre zuvor. Das zeigt eine aktuelle Studie, die unter der Leitung von Bernhard Hemmer, Professor für Neurologie an der TUM und Mitglied des DIFUTURE-Konsortiums, durchgeführt wurde. Er und sein Team werteten hierfür Daten von über zehn Millionen Menschen aus, darunter im Jahr 2015 knapp 30.000 MS-Erkrankte.

    Patientendaten für die Forschung nutzbar machen

    „Große medizinische Datensätze sind für uns in der Klinik unglaublich wertvoll. Sie verraten uns, ob es Parallelen beim Krankheitsverlauf gibt, ob es einheitliche Vorerkrankungen oder klinische Anzeichen gibt. Nur mit diesem großen Datenpool können wir statistisch verlässliche Aussagen treffen, die wir aus einzelnen Patientenakten unmöglich herauslesen könnten“, erklärt Bernhard Hemmer.

    Als Teil des Forschungskonsortiums DIFUTURE erheben Neurologen wie Prof. Bernhard Hemmer an der TUM, Prof. Martin Kerschensteiner an der Ludwig-Maximilians-Universität (LMU), Prof. Ulf Ziemann an der Universität Tübingen sowie Prof. Markus Naumann und Privatdozent Dr. Antonius Bayas am Klinikum Augsburg große Datenmengen von Patientinnen und Patienten mit Multipler Sklerose. Zusammen mit den Informatikern von DIFUTURE arbeiten sie an einer Vereinheitlichung und Zusammenführung dieser Daten, auf denen Biostatistiker und Bioinformatiker Analysen durchführen, bei denen Methoden der Künstlichen Intelligenz (KI) und des maschinellen Lernens eine Rolle spielen. Wichtig ist auch die Integration von Bildgebungsdaten, so dass den Neuroradiologen der Standorte eine wesentliche Aufgabe zukommt.

    Die Vorarbeiten, zusammen mit einem weiteren DIFUTURE-Partner aus dem Versicherungsbereich, lieferten bereits erste Ergebnisse: MS-Patientinnen und Patienten haben bereits fünf Jahre vor ihrer eigentlichen Diagnose sehr viel häufiger Erkrankungen wie Angststörungen, depressive Episoden oder unspezifische Seh- und Gefühlsstörungen.

    MS ist die erste Erkrankung, für die die Wissenschaftlerinnen und Wissenschaftler von DIFUTURE Verfahren entwickeln und testen, um medizinische Daten sicher und zuverlässig für die Forschung und im klinischen Alltag nutzen zu können. Das ist ein Ziel des DIFUTURE-Forschungsverbunds, der mit mehr als 28 Millionen Euro vom Bundesministerium für Bildung und Forschung gefördert wird. Für weitere Krankheiten wie Parkinson und Krebs, Schlaganfall und Herz-Kreislauf-Erkrankungen sollen die neuen Verfahren bald auch eingesetzt werden.

    Datenintegration und Datenschutz als Schwerpunkte

    Um medizinische Daten richtig nutzen zu können, ergeben sich neue Ansprüche an die Datenerhebung und -verarbeitung, aber auch an den Datenschutz. Damit Daten vergleichbar und überhaupt für KI-Methoden verwendbar sind, müssen sie sowohl rückwirkend vereinheitlicht als auch zukünftig einheitlich erfasst werden und bestmöglich vor fremdem Zugriff geschützt sein. IT- und Datenschutzexperten stellt das vor große technische Herausforderungen und Patientinnen und Patienten vor die Frage: wer darf auf meine Daten zugreifen?

    Ein besonderer Schwerpunkt von DIFUTURE liegt somit beim Datenschutz. Beim „verteilten Rechnen“ verlassen Daten aus der Krankenversorgung das Krankenhaus überhaupt nicht, sie sind nur im Krankenhaus selbst gespeichert. Um sie dennoch zusammen mit Daten aus anderen Kliniken zu nutzen, werden innovative Verfahren eingesetzt, die dem Prinzip „Bringe die Analyse zu den Daten“ (und nicht: die Daten zur Analyse) folgen - dies ist ein Grundkonzept von DIFUTURE. DIFUTURE wird zudem untersuchen, wie man Daten, die nicht für die Forschung, sondern für die Krankenversorgung erhoben worden sind, nicht nur sicher, sondern auch ohne eventuell auftretende Verzerrungen für die Forschung nutzen kann.

    „Die Medizin der Zukunft wird mehr denn je sorgfältig erhobene und zusammengeführte Daten benötigen und verwenden – deshalb müssen wir jetzt die Werkzeuge entwickeln, damit diese Daten möglichst vielen Patientinnen und Patienten zu Gute kommen. Gerade angesichts der immer komplexer werdenden Vernetzung muss aber völlig klar sein, dass die Daten den einzelnen Personen gehören und konsequent geschützt werden müssen“, erklärt Klaus Kuhn, Professor für Medizinische Informatik an der TUM und Leiter des Konsortiums.

    Mehr Informationen

    DIFUTURE ist eines von bundesweit vier Konsortien der Medizininformatikinitiative des Bundesministeriums für Bildung und Forschung. Partner des Konsortiums DIFUTURE sind TUM, LMU München und die Universität Tübingen mit ihren jeweiligen Uniklinika, die Universität und das Universitätsklinikum des Saarlandes, das Universitätsklinikum Regensburg sowie Universität und Klinikum Augsburg. Mit der Medizininformatik-Initiative sollen die Chancen der Digitalisierung in der Medizin für Versorgung und Forschung bestmöglich genutzt werden.

    Für die Studie von Prof. Hemmer wurden Daten der Kassenärztlichen Vereinigung Bayern (KVB) verwendet.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Klaus A. Kuhn
    Technische Universität München
    Lehrstuhl für Medizinische Informatik TUM
    Institut für Medizinische Informatik, Statistik und Epidemiologie am Klinikum rechts der Isar
    Tel: 089 4140 – 4320
    Email: klaus.kuhn@tum.de


    Originalpublikation:

    Data Integration for Future Medicine (DIFUTURE). Prasser F, Kohlbacher O, Mansmann U, Bauer B, Kuhn KA. Methods Inf Med. 2018;57(S 01):e57-e65. doi: 10.3414/ME17-02-0022.
    https://www.thieme-connect.com/DOI/DOI?10.3414/ME17-02-0022

    A Systematic Assessment of Prevalence, Incidence and Regional Distribution of Multiple Sclerosis in Bavaria From 2006 to 2015. Daltrozzo T, Hapfelmeier A, Donnachie E, Schneider A, Hemmer B. Front Neurol. 2018;9:871. doi:10.3389/fneur.2018.00871.
    https://www.frontiersin.org/articles/10.3389/fneur.2018.00871/full


    Weitere Informationen:

    https://difuture.de/ - Webseite von DIFUTURE
    https://www.mri.tum.de/digitalhealthsummit - Programm des Münchner „Digital Health Summit 2018“
    http://www.professoren.tum.de/kuhn-klaus-a/ - Profil von Prof. Klaus Kuhn
    http://www.professoren.tum.de/hemmer-bernhard/ - Profil von Prof. Bernhard Hemmer
    http://www.medizininformatik-initiative.de/de - Medizininformatikinitiative des BMBF


    Merkmale dieser Pressemitteilung:
    Journalisten
    Medizin
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay