idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.01.2019 11:58

Artificially produced cells communicate with each other: Models of life

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Friedrich Simmel und Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, exchange small chemical signaling molecules to trigger more complex reactions, such as the production of RNA and other proteins.

    Scientists around the world are working on creating artificial, cell-like systems that mimic the behavior of living organisms. Friedrich Simmel and Aurore Dupin have now for the first time created such artificial cell assemblies in a fixed spatial arrangement. The highlight is that the cells are able to communicate with each other.

    “Our system is a first step towards tissue-like, synthetic biological materials that exhibit complex spatial and temporal behavior in which individual cells specialize and differentiate themselves, not unlike biological organisms,” explains Friedrich Simmel, Professor of Physics of Synthetic Biosystems (E14) at TU Munich.

    Gene expression in a fixed structure

    Gels or emulsion droplets encapsulated in thin fat or polymer membranes serve as the basic building blocks for the artificial cells. Inside these 10 to 100 micron sized units, chemical and biochemical reactions can proceed uninhibited.

    The research team used droplets enclosed by lipid membranes and assembled them into artificial multicellular structures called "micro-tissues". The biochemical reaction solutions used in the droplets can produce RNA and proteins, giving the cells a of a kind of gene expression ability.

    Signal exchange and spatial differentiation of cells

    But that's not all: Small "signal molecules" can be exchanged between cells via their membranes or protein channels built into the membranes. This allows them to temporally and spatially couple with each other. The systems thus become dynamic – as in real life.

    Chemical pulses thus propagate through the cell structures and pass on information. The signals can also act as triggers, allowing initially identical cells to develop differently. "Our system is the first example of a multicellular system in which artificial cells with gene expression have a fixed arrangement and are coupled via chemical signals. In this way, we achieved a form of spatial differentiation, "says Simmel.

    Models, mini factories and microsensors

    Developing these kinds of synthetic systems is important since they allow scientists to investigate fundamental questions about the origins of life in a model. Complex organisms became possible only after cells began specializing and distributing work between cooperating cells. How this came about is among the most fascinating questions in basic research.

    Using a modular construction kit of tailor-made cell systems, the researchers hope to simulate various properties of biological systems in the future. The idea is that cells react to their environment and learn to act independently.

    The first applications are already on the horizon: In the long term, artificial cell assemblies can be deployed as mini-factories to produce specific biomolecules, or as tiny micro-robot sensors that process information and adapt to their environments.

    Cells from a 3-D printer

    Friedrich Simmel and Aurore Dupin still assemble their cell systems manually using micromanipulators. In the future, however, they plan to cooperate with the Munich University of Applied Sciences, for example, to systematically build larger and more lifelike systems using 3-D printing technology.

    Further information:

    This work was funded by the European Research Council and the DFG Cluster of Excellence Nanosystems Initiative Munich (NIM). Aurore Dupin was supported by the DFG Research Training Group "Chemical Foundations of Synthetic Biology".


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Friedrich C. Simmel
    Technical University of Munich
    Physics of Synthetic Biological Systems
    Am Coulombwall 4a, 85748 Garching, Germany
    Tel.: +49 89 289 11610 – E-Mail: simmel@tum.de
    Web: http://www.e14.ph.tum.de/en/home/


    Originalpublikation:

    Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits

    Aurore Dupin and Friedrich C. Simmel 
 Nature Chemistry, 26.11.2018 – DOI: 10.1038/s41557-018-0174-9
    
Link: https://www.nature.com/articles/s41557-018-0174-9

    Nature “Behind the paper”: https://chemistrycommunity.nature.com/users/189114-aurore-dupin/posts/40976-sign...

    Nature “News & Views”: https://www.nature.com/articles/s41557-018-0192-7


    Weitere Informationen:

    https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35181/ Link to the press release


    Bilder

    First author Aurore Dupin and Prof. Friedrich Simmel at the fluorescence microscope.
    First author Aurore Dupin and Prof. Friedrich Simmel at the fluorescence microscope.
    Image: U. Benz / TUM
    None

    Signal molecules (blue) spread in the artificial cell structure and allow communication through the membranes.
    Signal molecules (blue) spread in the artificial cell structure and allow communication through the ...
    Image: A. Dupin / TUM
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    First author Aurore Dupin and Prof. Friedrich Simmel at the fluorescence microscope.


    Zum Download

    x

    Signal molecules (blue) spread in the artificial cell structure and allow communication through the membranes.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).