idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
14.03.2019 09:12

Biomasse effizient umwandeln: Forscher der Universität Münster decken neuen Reaktionsmechanismus auf

Svenja Ronge Presse- und Informationsstelle
Westfälische Wilhelms-Universität Münster

    Nanowissenschaftlern der Universität Münster ist es gelungen, einen neuen Reaktionsmechanismus aufzuzeigen, mit dem Cellulose effizient umgewandelt werden kann. Diese neue Reaktion könnte zu einem effizienten, umweltfreundlichen und kostengünstigen Verfahren für die Umwandlung von Biomasse führen. Die Studie ist in der Fachzeitschrift „Angewandte Chemie“ erschienen.

    Eine der größten globalen Herausforderungen ist es derzeit, erneuerbare Quellen effizient einzusetzen, um in Zukunft den steigenden Bedarf an Energie und Chemikalien abzudecken. Biomasse ist dabei eine vielversprechende Alternative zu den bisherigen fossilen Quellen wie Kohle oder Erdöl. Den größten Anteil an Biomasse als natürlichem Speicher für Kohlenstoffverbindungen, die für die Herstellung von Kraftstoffen und Grundchemikalien entscheidend sind, hat die Cellulose. Um ihr gesamtes Potenzial zu entfalten, muss die kettenförmige Struktur der Cellulose aufgebrochen werden.

    Das kann durch eine sogenannte Hydrolyse-Reaktion erfolgen, die allerdings aufgrund der atomaren Struktur der Cellulose nur schwer möglich ist. Wissenschaftlern der Westfälischen Wilhelms-Universität Münster (WWU) um Dr. Saeed Amirjalayer und Prof. Dr. Harald Fuchs und der Ruhr-Universität Bochum um Prof. Dr. Dominik Marx ist es nun gelungen, einen neuen Reaktionsmechanismus aufzuzeigen, mit dem Cellulose durch den Einsatz von mechanischer Kraft effizient umgewandelt werden kann. Diese sogenannte mechano-katalytische Reaktion könnte dazu führen, ein umweltfreundliches und kostengünstiges Verfahren für die Umwandlung von Biomasse zu etablieren. Die Studie, die die Deutsche Forschungsgemeinschaft und der Exzellenzcluster RESOLV der Ruhr-Universität Bochum unterstützt haben, ist in der Fachzeitschrift „Angewandte Chemie“ erschienen.

    Hintergrund und Methode:

    Bei der Hydrolyse-Reaktion, durch die Cellulose aufgespalten werden kann, bleiben einzelne molekulare Bausteine erhalten. Diese molekularen Bausteine bilden die eigentliche Basis, um Treibstoffe oder chemische Grundstoffe herzustellen. Auf der Suche nach Möglichkeiten, um die Hydrolyse-Reaktion effizienter zu machen, fanden Forscher bereits in früheren Studien experimentelle Hinweise darauf, dass mechanische Kräfte den Prozess der Umwandlung beeinflussen können.

    Bisher war es noch nicht gelungen, auf atomarer Ebene zu zeigen, wie genau dieser Einfluss während der einzelnen Reaktionsschritte aussieht. Allerdings ist es nur so möglich, noch effizientere und ressourcenschonendere Prozesse dieser Art zu entwickeln als bisher. In der nun veröffentlichen Arbeit zeigen die Wissenschaftler, dass der Einsatz von mechanischer Kraft auf die Cellulosemoleküle oberhalb einer Grenze einen signifikanten Einfluss auf die Reaktion hat.

    Die Nanowissenschaftler führten dazu sogenannte atomistische Rechnungen durch. Diese ermöglichten es ihnen, die einzelnen Schritte der Hydrolyse-Reaktion im Detail zu verfolgen und gleichzeitig eine Zugkraft auf die Molekülstruktur auszuüben. Die Wissenschaftler erstellten sogenannte Energieprofile, die jeweils den Energieverlauf entlang des Reaktionswegs mit und ohne den Einfluss der mechanischen Kräfte darstellten. Es zeigte sich: Übten die Forscher mechanische Kraft auf das molekulare Gerüst der Cellulose aus, veränderte das stark die Hydrolyse-Reaktion. Zum einen war die benötigte Energie um ein Vielfaches geringer. Zum anderen machte eine erhöhte Zugkraft zwei von ursprünglich drei Reaktionsschritten sogar überflüssig. „Mithilfe unserer atomistischen Rechnungen konnten wir explizit den Einfluss einer mechanischen Zugkraft auf den Reaktionsmechanismus untersuchen“, erläutert Erstautor Dr. Saeed Amirjalayer, Gruppenleiter am Physikalischen Institut. „Dies ermöglichte es uns, einen bisher unbekannten und vor allem hocheffizienten Reaktionsweg für die Umwandlung von Cellulose aufzuzeigen.“

    Die neuen Ergebnisse bestätigen nicht nur die experimentellen Beobachtungen, sondern weisen darüber hinaus das Potenzial auf, molekulare Prozesse mithilfe von mechanischer Kraft zu steuern. „Wir konnten unter anderem zeigen, dass durch mechanische Zugkraft die sogenannte Protonenaffinität in Cellulose regio-selektiv erhöht werden kann“, betont Saeed Amirjalayer.

    Die Wissenschaftler erhoffen sich, dass diese Arbeit nicht nur ein effizientes und umweltfreundliches Verfahren für die Umwandlung von Cellulose ermöglicht, sondern auch dazu führen kann, neuartige mechano-responsive Verbindungen, zum Beispiel Kunststoffe, zu entwickeln. Diese könnten dann durch mechanische Kräfte nach ihrer Anwendung recycelt werden.


    Wissenschaftliche Ansprechpartner:

    Dr. Saeed Amirjalayer (Erstautor)
    Physikalisches Institut AG Fuchs
    Wilhelm-Klemm-Str. 10
    48149 Münster
    Fon: +49 (0)251 83 63919


    Originalpublikation:

    S. Amirjalayer, H. Fuchs, D. Marx: Understanding the Mechanocatalytic Conversion of Biomass: A Low‐Energy One‐Step Reaction Mechanism by Applying Mechanical Force, Angewandte Chemie Int. Ed. (2019), DOI: 10.1002/anie.201811091


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Energie
    überregional
    Forschungsergebnisse
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay