idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.05.2019 08:44

Unique jumps in the genome

Dr. Thomas Bauer Presse- und Informationsstelle
Westfälische Wilhelms-Universität Münster

    Mobile elements or retrotransposons occupy more than half of the human genome – with a complex and multifaceted influence on our existence. On the one hand, they can fortuitously acquire important functions influencing the structure and regulation of our genes. On the other hand, uncontrolled multiple jumps can lead to genetic diseases and mistakes in gene regulation. Liliya Doronina and colleagues from the Medical Faculty of the University of Münster, investigated (i) how frequently do mobile elements independently insert into an identical genomic place in two organisms and (ii) how frequently are established mobile elements exactly excised from their genomic locus.

    Mobile elements or retrotransposons occupy more than half of the human genome. Once they were described as genomic parasites, but it is now realised that they have a more complex and multifaceted influence on our existence. On the one hand, they can fortuitously acquire important functions influencing the structure and regulation of our genes. On the other hand, uncontrolled multiple jumps can lead to genetic diseases and mistakes in gene regulation and can cause cancer. During evolution, our organism developed a defence system to minimize the activity of mobile elements and their harmful impacts. However, although most of our mobile elements, inherited from our mammalian ancestors, are inactive, some elements retain their activity and up to fifty diseases are known to be caused by retrotransposons.

    As a practical by-product, the insertion patterns of mobile elements can serve as markers of the evolutionary relatedness of their carriers. Genomic mobile elements shared by two species indicate a shared ancestry of their carriers, as long as the elements did not jump independently into the same genomic places in the two species or were not removed exactly from either of the genomes, both of which lead to the occurrence of false positive phylogenetic signals, also known as homoplasy (from Greek homos=same; plasis=form). Therefore, to reliably use these markers, it is essential to know how frequently such independent retrotransposon jumps may hit the same target site in genomes and how often they are exactly deleted.

    Liliya Doronina and her colleagues from the group of Jürgen Schmitz in the Medical Faculty of the University of Münster in Germany, investigated exactly these questions: (1) how frequently do mobile elements independently insert into an identical genomic place in two organisms and (2) how frequently are established mobile elements exactly excised from their genomic locus.

    They analyzed hundreds of thousands of unique retrotransposon insertions in human and other primate genomes. Only a very few cases of parallel retrotransposon insertions and precise deletions were found, confirming that these events are extremely rare. Due to their uniqueness and irreversibility, retrotransposon insertion patterns are therefore reliable sources for identifying the evolutionary relatedness among species, even among those with complex evolutionary histories, and are indeed excellent markers to reconstruct evolutionary trees. The presence of a retrotransposon in the same genomic position in several species does indeed indicate their common origin. Moreover, in light of the new study, the potential risk of recurring mobile element insertion-caused genetic diseases is nearly excluded.

    The study is entitled “True Homoplasy of Retrotransposon Insertions in Primates” by Liliya Doronina, Olga Reising, Hiram Clawson, David A. Ray, and Jürgen Schmitz, and is now published in the journal Systematic Biology.


    Wissenschaftliche Ansprechpartner:

    Dr. Liliya Doronina
    University of Münster
    Center for Molecular Biology of Inflammation
    Von-Esmarch-Straße 56, 48149 Münster
    Tel.: 0251 83 52101
    Liliya.Doronina@wwu.de


    Originalpublikation:

    Doronina L. et al. True Homoplasy of Retrotransposon Insertions in Primates. Systematic Biology, Volume 68, Issue 3, May 2019, Pages 482–493, https://doi.org/10.1093/sysbio/syy076


    Bilder

    Dr. Liliya Doronina, PD Dr. Jürgen Schmitz and biology student Olga Reising are excited about the publication of their study.
    Dr. Liliya Doronina, PD Dr. Jürgen Schmitz and biology student Olga Reising are excited about the pu ...
    FZ / Tronquet
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Biologie, Medizin
    überregional
    Forschungsergebnisse
    Englisch


     

    Dr. Liliya Doronina, PD Dr. Jürgen Schmitz and biology student Olga Reising are excited about the publication of their study.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).