idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.05.2019 11:36

Neues Halbleiter-Hybridmaterial für die nachhaltige Wasserstoffproduktion

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Ein Forschungsteam der Technischen Universität München (TUM) hat im Rahmen einer internationalen Kooperation einen effizienten Wasserspaltungskatalysator entwickelt. Er besteht aus einer Doppelhelix-Halbleiterstruktur, umhüllt mit Kohlenstoffnitrid. Dieser Katalysator ist ideal um billig und nachhaltig Wasserstoff zu erzeugen.

    Einem internationalen Team um den TUM-Chemiker Tom Nilges und den Ingenieur Karthik Shankar von der University of Alberta ist es gelungen, eine stabile und trotzdem flexible Halbleiterstruktur zu finden, die Wasser deutlich effizienter spaltet als bisher möglich.

    Kern der Struktur ist eine anorganische Doppelhelix-Verbindung aus den Elementen Zinn, Iod und Phosphor (SnIP). Sie wird in einem einfachen Prozess bei Temperaturen um 400 Grad Celsius synthetisiert. SnIP-Fasern sind einerseits flexibel und gleichzeitig so robust wie Stahl.

    „Das Material vereinigt die mechanischen Eigenschaften eines Polymers mit dem Potential eines Halbleiters“, sagt Tom Nilges, Professor für Synthese und Charakterisierung innovativer Materialien an der TU München. „Daraus können wir in einem weiteren technischen Schritt flexible Halbleiterbauteile herstellen.“

    Weiche Schale, harter Kern

    Mit dem Wasserspaltungskatalysator entwickelte das Forschungsteam eine erste Anwendung für das ungewöhnliche Material. Sie stellten dafür jeweils Nanoteilchen aus beiden Ausgangssubstanzen her und vermischten die Suspensionen dieser beiden Nanoteilchen miteinander. Dabei entsteht eine Struktur aus hartem und trotzdem flexiblem Kern aus SnIP-Doppelhelices umhüllt mit einer weichen Schale aus Kohlenstoffnitrid.

    Wie Messungen zeigten, ist die so entstandene heterogene Struktur nicht nur deutlich stabiler als die Ausgangsstoffe, sie kann auch Wasser viermal effizienter spalten als bisher möglich – und ist so interessant als Material, mit dem sich günstig Wasserstoff herstellen oder überschüssiger Strom aus Windkraftanlagen chemisch speichern lässt.

    Eindimensionale Fasern

    Die hohe Effizienz des Katalysators hängt vor allem mit seiner größeren Oberfläche zusammen. Dem Team gelang es, die Oberfläche zu vergrößern, indem sie die SnIP-Fasern in dünnere Stränge teilten. Am effektivsten ist eine Mischung aus 30 Prozent SnIP mit 70 Prozent Kohlenstoffnitrid.

    Die dünnsten Fasern bestehen dabei aus wenigen Doppelhelix-Strängen und sind nur wenige Nanometer dick. Das Material ist also praktisch eindimensional. Eingewickelt in Kohlenstoffnitrid behält es seine hohe Reaktivität, ist aber langlebiger und damit als Katalysator besser geeignet.

    Flexible Halbleiter könnten neuen Hype auslösen

    Die eindimensionalen SnIP-Doppelhelices eröffnen auch noch ganz andere Anwendungen . Besonders spannend für die Forschenden wäre es, nur noch einen Doppelhelix-Strang von SnIP zu haben. Der würde dann rechts- oder linksdrehend vorliegen – mit jeweils ganz besonderen optischen Eigenschaften. Das macht SnIP für die Optoelektronik interessant.

    „Wir konnten theoretisch zeigen, dass viele andere Verbindungen dieser Art existieren können und arbeiten gerade an der Synthese dieser Materialien“, sagt Nilges. „Flexible anorganische, nanometergroße 1D-Halbleiter können einen ebenso großen Hype auslösen wie es derzeit bei 2D-Schichtmaterialien wie Graphen, Phosphoren oder Molybdändisulfid der Fall ist.“

    Weitere Informationen:

    Die Arbeiten wurden unter unterstützt durch die Europäische Gemeinschaft im Rahmen des Projekts „Calipso“, vom National Research Council Canada (NRC), vom Natural Sciences and Engineering Research Council of Canada (NSERC) und der Deutschen Forschungsgemeinschaft (DFG) im Rahmen der Internationalen Graduiertenschule ATUMS (TU München und University of Alberta, Kanada), durch die Exzellenzcluster e-conversion und Nanosystems Initiative Munich (NIM), das Projekt „Solar Technologies go Hybrid” (Soltech) des Freistaats Bayern, durch das Center for Nanoscience (CeNS), von Future Energy Systems (FES), CMC Microsystems und der Diamond Light Source Ltd..


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Tom Nilges
    Professur für Synthese und Charakterisierung innovativer Materialien
    Technische Universität München
    Lichtenbergstr. 4, 85748 Garching


    Originalpublikation:

    Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems Based on SnIP
    Claudia Ott, Felix Reiter, Maximilian Baumgartner, Markus Pielmeier, Anna Vogel, Patrick Walke, Stefan Burger, Michael Ehrenreich, Gregor Kieslich, Dominik Daisenberger, Jeff Armstrong, Ujwal Kumar Thakur, Pawan Kumar, Shunda Chen, Davide Donadio, Lisa S. Walter, R. Thomas Weitz, Karthik Shankar and Tom Nilges
    Advanced Functional Materials, 2019, 1900233 – DOI: 10.1002/adfm.201900233
    Link: https://doi.org/10.1002/adfm.201900233


    Weitere Informationen:

    https://www.tum.de/die-tum/aktuelles/pressemitteilungen/details/article/35446/ Link zur Pressemitteilung
    https://www.igsse.gs.tum.de/index.php?id=47&L=1 Link zur ATUMS
    https://mediatum.ub.tum.de/1486437 Link zu Bildmaterial mir hoher Auflösung


    Bilder

    Dr. Claudia Ott und Doktorand Felix Reiter in ihrem Labor in Garching.
    Dr. Claudia Ott und Doktorand Felix Reiter in ihrem Labor in Garching.
    Bild: U. Benz / TUM
    None

    Elektronenmikroskopische Aufnahme des Hybrid-Materials.
    Elektronenmikroskopische Aufnahme des Hybrid-Materials.
    Bild: Pawan Kumar / University of Alberta
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Chemie, Elektrotechnik, Energie, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Dr. Claudia Ott und Doktorand Felix Reiter in ihrem Labor in Garching.


    Zum Download

    x

    Elektronenmikroskopische Aufnahme des Hybrid-Materials.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).