idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.06.2019 11:18

Immortal quantum particles: the cycle of decay and rebirth

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Decay is relentless in the macroscopic world: broken objects do not fit themselves back together again. However, other laws are valid in the quantum world: new research shows that so-called quasiparticles can decay and reorganize themselves again and are thus become virtually immortal. These are good prospects for the development of durable data memories.

    As the saying goes, nothing lasts forever. The laws of physics confirm this: on our planet, all processes increase entropy, thus molecular disorder. For example, a broken glass would never put itself back together again.

    Theoretical physicists at the Technical University of Munich (TUM) and the Max Planck Institute for the Physics of Complex Systems have discovered that things which seem inconceivable in the everyday world are possible on a microscopic level.

    “Until now, the assumption was that quasiparticles in interacting quantum systems decay after a certain time. We now know that the opposite is the case: strong interactions can even stop decay entirely,” explains Frank Pollmann, Professor for Theoretical Solid-State Physics at the TUM. Collective lattice vibrations in crystals, so-called phonons, are one example of such quasiparticles.

    The concept of quasiparticles was coined by the physicist and Nobel prize winner Lev Davidovich Landau. He used it to describe collective states of lots of particles or rather their interactions due to electrical or magnetic forces. Due to this interaction, several particles act like one single one.

    Numeric methods open up new perspectives

    Up until now, it wasn’t known in detail which processes influence the fate of these quasiparticles in interacting systems,” says Pollmann. “It is only now that we possess numerical methods with which we can calculate complex interactions as well as computers with a performance which is high enough to solve these equations.”

    “The result of the elaborate simulation: admittedly, quasiparticles do decay, however new, identical particle entities emerge from the debris,” says the lead author, Ruben Verresen. “If this decay proceeds very quickly, an inverse reaction will occur after a certain time and the debris will converge again. This process can recur endlessly and a sustained oscillation between decay and rebirth emerges.”

    From a physical point of view, this oscillation is a wave which is transformed into matter, which, according to quantum mechanical wave-particle duality, is possible. Therefore, the immortal quasiparticles do not transgress the second law of thermodynamics. Their entropy remains constant, decay has been stopped.

    The reality check

    The discovery also explains phenomena which were baffling until now. Experimental physicists had measured that the magnetic compound Ba3CoSB2O9 is astonishingly stable. Magnetic quasiparticles, magnons, are responsible for it. Other quasiparticles, rotons, ensure that helium which is a gas on the earth’s surface becomes a liquid at absolute zero which can flow unrestricted.

    “Our work is purely basic research,“ emphasizes Pollmann. However, it is perfectly possible that one day the results will even allow for applications, for example the construction of durable data memories for future quantum computers.

    More information:

    The research work was funded by the European Research Council (ERC) and the German Research Foundation (DFG) within the framework of the [Collaborative Research Center] SFB 1143, the Research Unit FOR1807 as well as the cluster of excellence Nanosystems Initiative Munich (NIM). Work will be carried on in the cluster of excellence Munich Center for Quantum Science and Technology (MCQST).


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Frank Pollmann
    Professorship for Theoretical and Solid State Physics
    James-Franck-Str. 1
    85748 Garching
    Tel.: +49 89 289 53760
    e-mail: frank.pollmann@tum.de
    Web: http://tccm.pks.mpg.de


    Originalpublikation:

    Ruben Verresen, Roderich Moessner & Frank Pollmann
    Avoided quasiparticle decay from strong quantum interactions
    nature physics, May 27, 2019
    DOI: 10.1038/s41567-019-0535-3
    https://www.nature.com/articles/s41567-019-0535-3


    Weitere Informationen:

    https://www.tum.de/nc/en/about-tum/news/press-releases/details/35492/
    https://mediatum.ub.tum.de/1506313
    http://www.professoren.tum.de/en/pollmann-frank/
    https://www.mcqst.de/


    Bilder

    Strong quantum interactions prevent quasiparticles from decay.
    Strong quantum interactions prevent quasiparticles from decay.
    Quelle: K. Verresen / TUM


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    Strong quantum interactions prevent quasiparticles from decay.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).