idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.11.2019 13:31

Hope for silicon solar cells with significantly improved efficiency: New synthesis route to soluble silicon clusters

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Theoretical calculations indicate that under certain conditions silicon can endow solar cells with a much higher efficiency. Small silicon clusters may provide a source of accordingly modified silicon. However, to date these clusters have not been accessible in soluble form, a prerequisite for flexible processing. Researchers at the Technical University of Munich (TUM) have now discovered a simple synthesis approach.

    Today, the best silicon solar cells in the world have an efficiency of 24 percent. The theoretical limit is around 29 percent. "This is because silicon normally crystallizes in a diamond structure which provides only an indirect band gap," explains Thomas Fässler, Professor of Inorganic Chemistry with Focus on New Materials at the Technical University of Munich.

    Researchers thus dream of materials in which silicon atoms are arranged in a manner that creates a direct band gap that they can exploit for solar energy production. The scientists view these small silicon clusters as model compounds for this purpose because the atoms can be arranged differently than in crystalline silicon.

    "These kinds of compounds are also interesting for a variety of other chemical experiments," says Professor Fässler. “Using only a few synthesis steps we can now join four and nine silicon atoms into tetrahedrons or near-spherical structures. However, in the past, the synthesis and isolation of the atomic clusters was very laborious. Now, we have taken a significant step forward."

    A cluster of nine silicon atoms

    Fusing potassium and silicon results in a compound with 12 potassium and 17 silicon atoms, a gray powder. First author Lorenz Schiegerl managed to stabilize the soluble, nine-atom clusters in liquid ammonia using a clever trick: He added an organic molecule to the ammonia that encapsulates the potassium atoms.

    "This simple synthesis, starting from elemental silicon, opens the door to myriad chemical experiments with these clusters," says Professor Fässler. "In the solvent pyridine, for example, the cluster is stabilized by two hydrogen atoms, similar to the presumed intermediates in large-scale production of polycrystalline silicon, which is prepared using silanes or chlorosilanes for commercially available solar cell modules."

    Creating new structures

    Particularly promising is another reaction path to obtaining compounds made of silicon clusters. Here, three of the nine silicon atoms combine with molecules that in turn contain silicon or, for example, carbon or tin. Clusters with the highest currently known silicon concentrations are found in these reddish-brown solutions. This opens up novel possibilities for depositing silicon with modified structures out of solution.

    "Extending this line of thinking, it should also be possible to build larger silicon structures using clusters of clusters. That would nearly close the gap to the aspirations of theoreticians," says Prof. Fässler. "In any case, we have opened the door to fascinating, new chemistry."

    ###

    The project was funded by WACKER Chemie AG as part of the "WACKER Institute for Silicon Chemistry" at TUM, the Bavarian research association "Solar Technologies Go Hybrid" and the Academy of Finland. The electron structure calculations were done by the team of Prof. Karttunen, Aalto University, Helsinki (Finland) at the Finnish IT Center for Science (CSC).


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Thomas F. Fässler
    Technical University of Munich
    Professorship for Inorganic Chemistry with Focus on New Materials
    Lichtenbergstr. 4, 85748 Garching, Germany
    Tel.: +49 89 289 13131
    E-Mail: thomas.faessler@lrz.tum.de


    Originalpublikation:

    Silicon Clusters with Six and Seven Unsubstituted Vertices via a Two-step Reaction from Elemental Silicon
    L. J. Schiegerl, A. J. Karttunen, W. Klein, T. F. Fässler
    Chemical Science, 2019, 10, 9130 – 9139 – DOI: 10.1039/C9SC03324F
    https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc03324f

    Charged Si9 Clusters in Neat Solids and the Detection of [H2Si9]2− in Solution – A Combined NMR, Raman, Mass Spectrometric, and Quantum Chemical Investigation
    L. J. Schiegerl, A. J. Karttunen, J. Tillmann, S. Geier, G. Raudaschl-Sieber, M. Waibel, T. F. Fässler
    Angew. Chem. Int. Ed. 2018, 57, 12950 –12955 – DOI: 10.1002/anie.201804756
    https://onlinelibrary.wiley.com/doi/10.1002/ange.201804756


    Weitere Informationen:

    https://www.department.ch.tum.de/en/acnm/welcome/ Homepage of Prof. Fässler's group
    https://www.tum.de/nc/en/about-tum/news/press-releases/details/35779/ Press release on the website of TUM with additional links


    Bilder

    PhD student Kevin Frankiewicz works with nine-atom silicon clusters dissolved in liquid ammonia in the laboratory of Prof. Fässler, Professorship of Inorganic Chemistry with Focus on New Materials.
    PhD student Kevin Frankiewicz works with nine-atom silicon clusters dissolved in liquid ammonia in t ...
    Uli Benz / TUM
    None

    Nine-atom silicon clusters could be precursors of larger structures. Theoreticians hope to obtain materials that have a direct band gap and thus enable significantly more efficient solar cells.
    Nine-atom silicon clusters could be precursors of larger structures. Theoreticians hope to obtain ma ...
    A. J. Karttunen / Aalto University
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Chemie, Elektrotechnik, Energie, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    PhD student Kevin Frankiewicz works with nine-atom silicon clusters dissolved in liquid ammonia in the laboratory of Prof. Fässler, Professorship of Inorganic Chemistry with Focus on New Materials.


    Zum Download

    x

    Nine-atom silicon clusters could be precursors of larger structures. Theoreticians hope to obtain materials that have a direct band gap and thus enable significantly more efficient solar cells.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).