idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.02.2020 17:00

Social control among immune cells improves defence against infections

Benjamin Waschow Stabsstelle Unternehmenskommunikation
Universitätsklinikum Freiburg

    Immune cells activated by pathogens perceive each other and thus mutually control their proliferation / This mechanism could improve immune therapies for cancer / publication in Immunity

    A simple mechanism, previously known from bacteria, ensures that the immune system strikes a balance between the rapid expansion of immune cells and the prevention of an excessive self-damaging reaction after an infection. This has now been deciphered by scientists at the University of Freiburg - Medical Center (Germany) and colleagues from the Netherlands and Great Britain. An infection quickly activates T-cells, which leads to their proliferation. The research team has now shown that these cells are able to perceive each other and - based on their density – jointly determine whether or not they should continue to proliferate. The newly discovered mechanism could also help to improve cancer immunotherapies. The study was published in the scientific journal Immunity on 11 February 2020.

    Cooperation among immune cells

    "We showed that these immune cells perceive and regulate each other. The immune cells act as a team and not as autonomously acting individualists," said Dr. Jan Rohr, head of the study and scientist at the Centre for Immunodeficiency (CCI) at the University of Freiburg - Medical Center. "This principle of density control of immune cells is simple and very effective. This makes it reliable and at the same time hopefully accessible for therapeutic approaches," said Rohr. At low density, the T-cells support each other in their proliferation. As soon as a threshold value of cell density is reached, the mutual support turns into mutual inhibition, which prevents further cell proliferation. This mechanism leads to the efficient amplification of initially weak immune reactions, but is also able to prevent excessive and potentially dangerous immune reactions.

    Immunotherapies could become even more effective

    This finding casts a new light on certain cancer immunotherapies. Tumors protect themselves by suppressing the immune system. To circumvent this, therapies have been developed in which T-cells are taken from patients, strengthened and expanded in the laboratory, and finally returned to the patient. For these therapies usually high cell counts are administered to make the therapy particularly effective. "It is possible that the immune cells switch off each other if they are administered at high numbers. A repeated administration of lower numbers of immune cells may fight the tumour cells more effectively. ," says Rohr. The extent to which this might help to improve current immunotherapies will have to be investigated in further studies.

    In their study, the scientists investigated immune cells in the laboratory using microscopic time-lapse imaging and genetic analyses. The mechanisms found were then used by researchers at the University of Leiden, Netherlands, to develop a mathematical model of cell-cell interactions. Finally, the mechanisms found were tested in animal models. "These different research approaches complemented and supported each other very well," said the project leader from the University of Freiburg - Medical Center.


    Wissenschaftliche Ansprechpartner:

    Dr. Jan Rohr
    Researcher
    Centre for Chronic Immunodeficiency (CCI)
    Center for Pediatrics
    University of Freiburg – Medical Center
    Phone: +49 (0)761 270-45293
    jan.rohr@uniklinik-freiburg.de


    Originalpublikation:

    Originaltitel der Studie: Quorum-regulation mediated by nested antagonistic feedback circuits via CD28 and CTLA-4 confers robustness to CD8+ T cell population dynamics
    DOI: 10.1016/j.immuni.2020


    Weitere Informationen:

    https://www.uniklinik-freiburg.de/english/cci.html Center for Chronic Immunodeficiency


    Bilder

    This image depicts T cells interacting with each other. Cell surfaces are labeled in red, cell nuclei in blue and receptors mediating communication in green.
    This image depicts T cells interacting with each other. Cell surfaces are labeled in red, cell nucle ...
    Immunity journal
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Biologie, Ernährung / Gesundheit / Pflege, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    This image depicts T cells interacting with each other. Cell surfaces are labeled in red, cell nuclei in blue and receptors mediating communication in green.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).