idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.02.2020 12:04

Superresolution-Live-Cell-Imaging gewährt unerwartete Einblicke in den dynamischen Aufbau von Mitochondrien

Susanne Dopheide Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Mitochondrien sind als Kraftwerke und Energiespeicher essentielle Bestandteile von nahezu allen Zellen in Pflanzen, Pilzen und Tieren. Bisher nahm man an, dass diese Funktionen einem statischen Aufbau der mitochondrialen Membranen zu Grunde liegen. Forscher der Heinrich-Heine-Universität Düsseldorf (HHU) und der University of California Los Angeles (UCLA) und haben nun herausgefunden, dass die Innenmembranen der Mitochondrien keineswegs statisch sind, sondern ihre Struktur ständig, und zwar alle paar Sekunden, in lebenden Zellen ändern. Dieser dynamische Anpassungsprozess erhöht noch einmal die Leistungsfähigkeit unserer zellulären Kraftwerke.

    „Diese Erkenntnis ändert nach unserer Einschätzung grundsätzlich die Sichtweise, wie unsere zellulären Kraftwerke funktionieren und wird vermutlich die Lehrbücher verändern“, sagt Prof. Dr. Andreas Reichert, Institut für Biochemie und Molekularbiologie I der HHU. Die Ergebnisse sind aktuell in EMBO Reports beschrieben.

    Mitochondrien sind extrem wichtige Bestandteile von Zellen, da sie unter anderem für die geregelte Umwandlung von Energie aus der Nahrung in chemische Energie in Form von Adenosintriphosphat (ATP) notwendig sind. ATP ist die Energiewährung der Zellen und pro Tag produziert und verbraucht ein erwachsener Mensch circa 75 Kilogramm ATP. Dabei wird ein Molekül ATP pro Tag circa 20.000-mal produziert und anschließend wieder zur Energieverwertung verbraucht. Diese immense Syntheseleistung erfolgt in der Innenmembran der Mitochondrien, die zahlreiche Einfaltungen aufweist. Diese nennen sich Cristae und man ging bisher davon aus, dass je nach Zelltyp ein bestimmter statischer Aufbau der Cristae die Synthese von ATP gewährleistet. Ob und inwieweit Cristae-Membranen ihre Struktur dynamisch in lebenden Zellen anpassen oder ändern können und welche Proteine dafür notwendig sind, war bisher unbekannt.

    Dem Forscherteam von Prof. Dr. Andreas Reichert mit Dr. Arun Kondadi und Dr. Ruchika Anand vom Institut für Biochemie und Molekularbiologie I der HHU in Kooperation mit dem Forschungsteam um Prof. Dr. Orian Shirihai und Prof. Dr. Marc Liesa von der UCLA (USA) gelang es erstmals zu zeigen, dass Cristae-Membranen in lebenden Zellen kontinuierlich, im Rahmen von Sekunden, ihre Struktur dynamisch innerhalb der Mitochondrien ändern. Sie konnten zudem nachweisen, dass dafür ein erst kürzlich identifizierter Proteinkomplex, der MICOS-Komplex, notwendig ist. Fehlfunktionen des MICOS-Komplexes können zu diversen schweren Erkrankungen führen, wie Morbus Parkinson und einer Form der mitochondrialen Enzephalopathie mit Leberschädigung. Nach der Identifikation der ersten Proteinkomponente dieses Komplexes (Fcj1/Mic60) vor circa zehn Jahren durch Prof. Andreas Reichert und seine Arbeitsgruppe, ist dies ein weiterer wichtiger Baustein die Funktion des MICOS-Komplexes besser zu verstehen.

    „Unsere nun publizierten Beobachtungen führen zu dem Modell, dass Cristae nach Membranabschnürungen auch kurzzeitig als isolierte Vesikel innerhalb von Mitochondrien existieren und dann wieder mit der Innenmembran refusionieren können. Dies erlaubt eine optimale und extrem schnelle Anpassung an energetische Anforderungen in einer Zelle“, sagt Prof. Andreas Reichert.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Andreas Reichert
    Institute of Biochemistry and Molecular Biology I
    University Hospital Düsseldorf
    Heinrich-Heine University Düsseldorf
    Tel.: +4921181-12707, -12717
    reichert@hhu.de


    Originalpublikation:

    EMBO Reports, Kondadi et al., 2020, https://www.embopress.org/doi/10.15252/embr.201949776


    Weitere Informationen:

    http://vgl, auch: „Mitochondrien funktionieren ähnlich wie moderne Akkus in Elektroautos“, https://www.uni-duesseldorf.de/home/startseite/news-detailansicht-inkl-gb/articl...


    Bilder

    Anhang
    attachment icon Animationsvideo Animationsvideo "Cristae-Membranen passen ihre Struktur dynamisch in lebenden Zellen an"

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).