Mit Licht lassen sich Elektronen aus Atomen herausschlagen, dabei prallen Lichtteilchen und Elektronen wie zwei Billardkugeln voneinander ab – der Compton-Effekt. Warum Elektronen sogar aus einem Atom herausgeschlagen werden, wenn das Licht dafür eigentlich zu wenig Energie hat, hat jetzt ein internationales Team von Physikern unter der Leitung von Wissenschaftlern der Goethe-Universität Frankfurt herausgefunden. (Nature Physics, DOI 10.1038/s41567-020-0880-2)
Als der amerikanische Physiker Arthur Compton 1922 entdeckte, dass sich Lichtwellen wie Teilchen verhalten und in einem Stoßexperiment Elektronen aus Atomen herausschlagen können, war dies ein Meilenstein für die Quantenphysik. Fünf Jahre später wurde der Wissenschaftler dafür mit dem Nobelpreis geehrt. Für seine Experimente nutzte Compton sehr kurzwelliges Licht mit hoher Energie, demgegenüber er die Bindungsenergie des Elektrons an den Atomkern vernachlässigen konnte. Compton nahm daher für seine Berechnungen kurzerhand an, dass das Elektron frei im Raum ruhen würde.
In den folgenden 90 Jahren wurden bis heute zahlreiche Experimente und Berechnungen zum Compton-Effekt gemacht, die immer wieder Asymmetrien zeigten und Rätsel aufwarfen. So wurde beobachtet, dass in bestimmten Experimenten scheinbar Energie verloren ging, wenn man die Bewegungsenergie der Elektronen und Lichtteilchen (Photonen) nach dem Zusammenstoß mit der Energie der Photonen vor dem Zusammenprall verglich. Da Energie nicht einfach verschwinden kann, wurde vermutet, dass sich in diesen Fällen der Einfluss des Atomkerns bei dem Photon-Elektron-Zusammenprall entgegen der vereinfachenden Annahme von Compton nicht vernachlässigen lässt.
Ein Team von Physikern um Professor Reinhard Dörner und Doktorand Max Kircher von der Goethe-Universität Frankfurt hat nun erstmals bei einem Stoßexperiment mit Photonen gleichzeitig die abgelenkten Elektronen und die Bewegung des Atomkerns beobachtet. Dazu bestrahlten sie Heliumatome mit Röntgenlicht der Röntgenstrahlungsquelle PETRA III am Hamburger Beschleunigerzentrum DESY. Die herausgelösten Elektronen und die geladenen „Atomreste“(Ionen) detektierten sie in einem COLTRIMS-Reaktionsmikroskop, einer Apparatur, die Dörner mitentwickelt hat und die ultraschnelle Reaktionsprozesse von Atomen und Molekülen sichtbar machen kann.
Die Ergebnisse waren überraschend: Die Wissenschaftler beobachteten nämlich nicht nur, dass die Energie der stoßenden Photonen natürlich erhalten bleibt und zu einem Teil auf in eine Bewegung des Atomkerns (genauer: des Ions) überführt wird. Vielmehr wird zuweilen ein Elektron sogar aus dem Atom herausgeschlagen, wenn die Energie des stoßenden Photons eigentlich zu gering ist, um die Bindungskräfte des Elektrons an den Atomkern zu überwinden.
Insgesamt wurde nur in zwei Dritteln der Fälle das Elektron dorthin gestoßen, wo man es bei einem Billard-Stoßexperiment erwarten würde. In allen anderen Fällen wurde das Elektron quasi vom Kern reflektiert und teilweise sogar in die entgegengesetzte Richtung gelenkt.
Reinhard Dörner: „Wir konnten damit zeigen, dass das ganze System aus Photon, herausgeschlagenem Elektron und Ion nach quantenmechanischen Gesetzen schwingt. Unsere Experimente liefern damit einen neuen Ansatzpunkt zum experimentellen Testen quantenmechanischer Theorien des Compton Effekts, der zum Beispiel in der Astrophysik oder der Röntgenphysik eine wichtige Rolle spielt.“
Professor Reinhard Dörner
Institut für Kernphysik
Goethe-Universität Frankfurt
Max-von-Laue-Strasse 1
60438 Frankfurt
Telefon +49 (0)69 798 47003
doerner@atom.uni-frankfurt.de
http://www.atom.uni-frankfurt.de
Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold. Max Kircher et. al. Nature Physics, DOI 10.1038/s41567-020-0880-2; https://www.nature.com/articles/s41567-020-0880-2
http://www.uni-frankfurt.de/87402622 DownloadGrafik: Schematische Darstellung des Compton-Effekts (vorne), wie er im COLTRIMS-Reaktionsmikroskop (hinten) gemessen wird. Ein Photon (geschlängelte Linie) trifft ein Elektron eines Helium-Atoms, wodurch das Elektron aus dem Atom herausgeschlagen wird (roter Punkt). Das Atom wird dadurch zum geladenen Ion (blauer Punkt). Elektrische und magnetische Felder lenken Elektron und Ion zu Detektoren (rot: Elektronendetektor, blau: Ionendetektor).
Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).