idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.06.2020 13:50

Atomphysik: Strahlungsdruck mit Rückstoß

Jennifer Hohensteiner Public Relations und Kommunikation
Goethe-Universität Frankfurt am Main

    Licht übt auf einen Körper einen gewissen Druck aus: Sonnensegel könnten auf diese Weise künftige Raumsonden antreiben. Wenn ein Lichtteilchen (Photon) jedoch auf ein einzelnes Molekül trifft und aus diesem ein Elektron herausschlägt, so fliegt das Molekül der Lichtquelle entgegen. Das haben jetzt Atomphysiker der Goethe-Universität Frankfurt erstmals beobachtet und damit 90 Jahre alte Theorien bestätigt.

    FRANKFURT. Bereits im 16. Jahrhundert postulierte der große Gelehrte Johannes Kepler, dass das Sonnenlicht einen gewissen Druck ausübt, zeigte doch der Schweif der von ihm beobachteten Kometen stets weg von der Sonne. 2010 nutzte die japanische Raumsonde Ikaros erstmals ein Sonnensegel, um durch die Kraft des Sonnenlichts ein wenig schneller zu werden.

    Physikalisch und intuitiv kann der Licht- oder Strahlungsdruck mit den Teilcheneigenschaften von Licht erklärt werden: Die Lichtteilchen (Photonen) prallen auf die Atome eines Körpers und übertragen einen Teil ihres eigenen „Schwungs“ (physikalisch: Impuls = Masse mal Geschwindigkeit) auf den Körper, der dadurch schneller wird.

    Als Physiker im 20. Jahrhundert diese Impuls-Übertragung allerdings im Labor in Experimenten mit Photonen bestimmter Wellenlängen untersuchten, die aus Atomen einzelne Elektronen herausschlugen, stießen sie auf ein überraschendes Phänomen: Der Impuls des herausgeschlagenen Elektrons war größer als der des ankommenden Photons. Dies ist eigentlich unmöglich, denn seit Isaac Newton ist bekannt, dass es in einem System für jede Kraft ein gleich große, aber entgegengesetzte Kraft geben muss, quasi den Rückstoß. Daher folgerte 1930 der Münchener Wissenschaftler Arnold Sommerfeld, dass der zusätzliche Impuls des wegfliegenden Elektrons von dem Atom stammen muss, das es zurücklässt. Dieses Atom müsse in die entgegengesetzte Richtung und damit auf die Lichtquelle zu fliegen. Nachmessen konnte man das mit den damals verfügbaren Instrumenten nicht.

    90 Jahre später ist es jetzt Physikern um den Doktoranden Sven Grundmann und Prof. Reinhard Dörner vom Institut für Kernphysik erstmals gelungen, diesen Effekt mit dem an der Goethe-Universität Frankfurt entwickelten COLTRIMS-Reaktionsmikroskop zu vermessen. Sie nutzten dazu Röntgenlicht an den Beschleunigerzentren DESY in Hamburg und ESRF im französischen Grenoble, um aus Helium- und Stickstoffmolekülen Elektronen herauszuschlagen. Die Bedingungen wählten sie dabei so, dass dafür jeweils nur ein Photon pro Elektron genügte. Den Impuls von herausgeschlagenen Elektronen und der nunmehr geladenen Helium- und Stickstoffatome – sie werden als Ionen bezeichnet – konnten Sie im COLTRIMS-Reaktionsmikroskop mit bislang unerreichter Genauigkeit bestimmen.

    Prof. Reinhard Dörner erläutert: „Wir konnten nicht nur den Impuls des Ions messen, sondern auch sehen, woher er kommt, nämlich vom Rückstoß des herausgeschlagenen Elektrons. Wenn Photonen bei solchen Stoßexperimenten niedrige Energien haben, kann man rechnerisch den Photonenimpuls vernachlässigen. Bei hohen Photonen-Energien führt das allerdings zu Ungenauigkeiten. In unseren Experimenten haben wir jetzt die energetische Schwelle bestimmen können, ab der der Photonenimpuls nicht mehr vernachlässigt werden kann. Unser experimenteller Durchbruch erlaubt uns jetzt viele weitere Fragen zu stellen, wie etwa die, was sich ändert, wenn man die Energie auf zwei oder mehr Photonen verteilt.“

    Publikation: Sven Grundmann, Max Kircher, Isabel Vela-Perez, Giammarco Nalin, Daniel Trabert, Nils Anders, Niklas Melzer, Jonas Rist, Andreas Pier, Nico Strenger, Juliane Siebert, Philipp V. Demekhin, Lothar Ph. H. Schmidt, Florian Trinter, Markus S. Schöffler, Till Jahnke, and Reinhard Dörner: Observation of Photoion Backward Emission in Photoionization of He and N2. Phys. Rev. Lett. 124, 233201 https://doi.org/10.1103/PhysRevLett.124.233201

    Weitere Informationen:
    Prof. Dr. Reinhard Dörner
    Institut für Kernphysik
    Tel. +49 (0)69 798-47003
    doerner@atom.uni-frankfurt.de
    https://www.atom.uni-frankfurt.de/

    Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

    Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der drei größten deutschen Universitäten. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist die Goethe-Universität Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main. www.goethe-universitaet.de

    Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Dr. Markus Bernards, Referent für Wissenschaftskommunikation, Abteilung PR & Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Telefon 069 798-12498, Fax 069 798-763-12531, bernards@em.uni-frankfurt.de


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Reinhard Dörner
    Institut für Kernphysik
    Tel. +49 (0)69 798-47003
    doerner@atom.uni-frankfurt.de
    https://www.atom.uni-frankfurt.de/


    Originalpublikation:

    Sven Grundmann, Max Kircher, Isabel Vela-Perez, Giammarco Nalin, Daniel Trabert, Nils Anders, Niklas Melzer, Jonas Rist, Andreas Pier, Nico Strenger, Juliane Siebert, Philipp V. Demekhin, Lothar Ph. H. Schmidt, Florian Trinter, Markus S. Schöffler, Till Jahnke, and Reinhard Dörner: Observation of Photoion Backward Emission in Photoionization of He and N2. Phys. Rev. Lett. 124, 233201 https://doi.org/10.1103/PhysRevLett.124.233201


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).