Künstliche Intelligenz und Time Sensitive Networking optimieren Industrie 4.0

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

idw-Abo
Science Video Project



Teilen: 
29.06.2020 12:35

Künstliche Intelligenz und Time Sensitive Networking optimieren Industrie 4.0

Udo Urban DFKI Kaiserslautern
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

    Im Projekt „KITOS – Künstliche Intelligenz für TSN zur Optimierung und Störungserkennung“ arbeiten Wissenschaftler und Ingenieure gemeinsam an Lösungen für ein dynamisches Netzwerkmanagement in der Industrie.

    KITOS entwickelt Konzepte für das Management TSN-basierter Netzwerke unterstützt durch Künstliche Intelligenz (KI)

    Im Projekt entwickeln die Konsortialpartner KI-Algorithmen, die Netzwerken die notwendige Dynamik und Zuverlässigkeit für Industrie 4.0 Szenarien geben und es den Anwendern erlauben, diese einfach und ohne tiefere Netzwerk- oder KI-Kenntnisse einsetzen zu können. Intelligente Werkzeuge unterstützen bei der Entscheidungsfindung, erlauben eine effizientere Ressourcennutzung und ermöglichen performantere Konfigurationen. Für den aktiven Betrieb wird das Netzwerkmanagement mit KI-unterstützten Fehlererkennungs- und Adaptionsmechanismen gegen Ausfälle abgesichert.

    Vielfalt von industriellen Kommunikationssystemen erschwert Vernetzung

    Die Vernetzung von Maschinensteuerungen, Sensoren und Aktoren spielt in der Industrie eine tragende Rolle. Dabei gibt es eine Vielfalt verschiedener echtzeitfähiger und deterministischer Kommunikationssysteme wie PROFINET, EtherCAT oder Sercos, die inkompatibel zueinander sind. Zusätzlich unterscheiden sich die echtzeitfähigen Netzwerke der Feldebene von nicht echtzeitfähigen IT-Netzwerken. Diese verschiedenen Netzwerke miteinander zu verknüpfen ist sehr komplex und arbeitsintensiv.

    Industrie 4.0 benötigt Unterstützung unterschiedlicher Anwendungsprofile im selben Netzwerk

    Eine nachhaltige Steigerung von Effizienz und Flexibilität in der Produktion ist die Basis, um die Vision Industrie 4.0 weiter umzusetzen. Dazu müssen über dasselbe Netzwerk Anwendungen mit unterschiedlichen Anforderungen betrieben werden:

    - Anwendungen mit hohen Datenraten und niedriger Latenz (Verzögerung) wie Videoinspektion oder Augmented-Reality-Anwendungen zur Unterstützung von Wartungstechnikern.
    - Antriebs- und Robotersteuerungen mit extrem niedriger Latenz und hochgenauer Synchronität.

    KITOS setzt auf Time-Sensitive Networking (TSN)

    Bei der Umsetzung setzen die Konsortialpartner auf Time-Sensitive Networking. TSN ist ein Ethernet-basierter Standard, der sowohl eine geringe Übertragungslatenz als auch eine hohe Synchronität ermöglicht. Ein industrielles Anwendungsprofil für TSN wird gegenwärtig in der Norm IEEE/IEC 60802 erarbeitet. Eine manuelle Konfiguration von TSN ist zwar möglich, jedoch ist diese statisch und bisweilen sehr komplex. Die Initialkonfiguration sowie die Reaktion auf veränderte Kommunikationsanforderungen, die Optimierung von TSN Netzwerken im Betrieb und die Vermeidung von Störungen erfordern ein weitreichendes Netzwerk-Know-how, das bei der Inbetriebnahme und beim Betrieb von Fertigungsanlagen vielfach nicht zur Verfügung steht. In KITOS sollen Methoden der Künstlichen Intelligenz, wie selbstlernende Verfahren, die sich stetig weiterentwickeln, genutzt und zur Konfiguration und Optimierung eines modernen Kommunikationsnetzes eingesetzt werden. Dadurch soll zum Beispiel ein besserer Schutz gegen Ausfälle erreicht oder auftretende Probleme bei Überlastungen gelöst werden.

    KITOS wird vom Forschungsbereich „Intelligente Netze“ des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) in Kaiserslautern koordiniert und vom Bundesministerium für Bildung und Forschung (BMBF) mit 5 Millionen Euro bis März 2023 gefördert.

    Partner:

    - Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern
    - Codesys Development GmbH, Kempten (Allgäu)
    - Robert Bosch GmbH, Gerlingen-Schillerhöhe
    - Eberhard Karls Universität Tübingen
    - Hilscher Gesellschaft für Systemautomation mbH, Hattersheim
    - Technische Universität Dresden
    - Bosch Rexroth AG, Lohr am Main

    Assoziierte Partner:

    Hirschmann Automation and Control GmbH, Neckartenzlingen


    Wissenschaftliche Ansprechpartner:

    Prof. Dr.-Ing. Hans Dieter Schotten
    Forschungsbereichsleiter Intelligente Netze
    Hans_Dieter.Schotten@dfki.de
    Tel.: +49 631 20575 3000


    Originalpublikation:

    https://www.dfki.de/web/news/detail/News/kitos/


    Merkmale dieser Pressemitteilung:
    Journalisten
    Elektrotechnik, Informationstechnik, Maschinenbau
    überregional
    Forschungsprojekte, Kooperationen
    Deutsch


    Teaser Foto


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay