Wissenschaftler der Westfälischen Wilhelms-Universität Münster haben herausgefunden, dass Gliazellen – ein Hauptbestandteil des Gehirns – nicht nur die Geschwindigkeit der Nervenleitung kontrollieren, sondern auch Einfluss auf die Genauigkeit der Signalleitung im Gehirn haben. Die Forschungsergebnisse sind in dem Fachmagazin "Nature Communications" erschienen.
Für die Leistungsfähigkeit des Gehirns ist es wichtig, dass ein Nervenimpuls möglichst schnell und präzise an sein Ziel gelangt. Es ist schon lange bekannt, dass die Nervenbahnen, auch als Axone bezeichnet, diese Impulse weiterleiten. Im Laufe der Evolution entstand eine isolierende Hülle um die Axone, das Myelin, das die Leitungsgeschwindigkeit erhöht. Diese isolierende Hülle wird von dem zweiten Zelltyp des Nervensystems, den Gliazellen – einem Hauptbestandteil des Gehirns – gebildet. Wird Myelin krankheitsbedingt abgebaut, kommt es zu neurologischen Störungen, wie zum Beispiel bei Multipler Sklerose oder bei Morbus Charcot-Marie-Tooth.
Wissenschaftlerinnen und Wissenschaftler der Westfälischen Wilhelms-Universität Münster (WWU) haben jetzt herausgefunden, dass Gliazellen nicht nur die Geschwindigkeit der Nervenleitung kontrollieren, sondern auch einen Einfluss auf die Genauigkeit der Signalleitung haben. Ohne Myelin kommt es zu kurzschlussartigen Vorgängen, die die Genauigkeit der Reizweiterleitung beeinflussen. Die Forschungsergebnisse sind im Fachmagazin „Nature Communications“ erschienen.
Hintergrund und Methodik
Gliazellen sind nicht nur für die Energielieferung unentbehrlich, sie haben auch ein breites Spektrum zusätzlicher Aufgaben im Gehirn: Sie übernehmen den Stofftransport, regulieren den Flüssigkeitsaustausch und sorgen für die Aufrechterhaltung der Homöostase. Um die Bedeutung von Gliazellen besser zu verstehen, hat ein Forscherteam um Prof. Dr. Christian Klämbt vom Institut für Neuro- und Verhaltensbiologie der WWU Verhaltensänderungen nach Licht-induzierter Aktivierung einzelner Neuronen bei Taufliegen (Drosophila melanogaster) untersucht.
„Zusätzlich zu einer durch Licht vermittelten neuronalen Aktivierung haben wir einzelne Gliazellen entweder aus dem Nervensystem entfernt oder ihre Entwicklung spezifisch gestört“, erläutert Christian Klämbt. Die Wissenschaftler stellten fest, dass Gliazellen das radiale Wachstum der Axone kontrollieren. Kleinere Axone haben wie erwartet eine geringere Leitungsgeschwindigkeit, die die Forscher in Zusammenarbeit mit Kollegen der Universität Bonn durch elektrophysiologische Messungen bestimmten. Erstaunlicherweise zeigte sich, dass eine geringe Leitungsgeschwindigkeit nicht zu einem veränderten Bewegungsverhalten führt. Der in diesem Zusammenhang wichtigere Beitrag der Gliazellen ist die Bildung von Membranfortsätzen zwischen einzelnen Axonen, was eine elektrische Kopplung (also Kurzschlüsse) verhindert und damit entscheidend zur Präzision der Bewegungssteuerung beiträgt.
Die Analyse der verschiedenen Bewegungsmuster führten die Wissenschaftler mit einem eigens entwickelten Gerät durch. Die Entwicklung des sogenannten FIM Aufbaus (Frustrated total internal reflection-based Imaging Method) erlaubt zusammen mit einer selbstentwickelten Software die hochauflösende Darstellung und Analyse von Bewegungen selbst kleinster Organismen.
Die Funktion von Gliazellen als aktive Modulatoren von Geschwindigkeit und besonders der Präzision der Erregungsleitung ist bislang nicht beschrieben worden. „Durch unsere Forschung wird die Rolle der Gliazellen als aktive Komponente des Nervensystems deutlich. Mit den neuen Erkenntnissen schaffen wir auch eine Grundlage für ein besseres Verständnis von einigen Symptomen bei Erkrankungen des Nervensystems“, fasst Christian Klämbt zusammen.
Die Arbeit wurde durch die Deutsche Forschungsgemeinschaft (DFG) gefördert.
Prof. Dr. Christian Klämbt
Institut für Neuro- und Verhaltensbiologie der Westfälischen Wilhelms-Universität Münster
Tel: +49 251 83-21122
klaembt@uni-muenster.de
Kottmeier, R., Bittern, J., Schoofs, A., Scheiwe, F., Matzat, T., Pankratz, M., Klämbt, C. (2020): Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila. Nature Communications. Doi: 10.1038/s41467-020-18291-1.
http://neurobio.uni-muenster.de/ Klämbt Lab
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Medizin
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).