idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
29.09.2020 10:30

Geoscience: Cosmic diamonds formed during gigantic planetary collisions

Markus Bernards Public Relations und Kommunikation
Goethe-Universität Frankfurt am Main

    FRANKFURT. Geoscientists from Goethe University have found the largest extraterrestrial diamonds ever discovered – a few tenths of a millimetre in size nevertheless – inside meteorites. Together with an international team of researchers, they have now been able to prove that these diamonds formed in the early period of our solar system when minor planets collided together or with large asteroids. These new data disprove the theory that they originated deep inside planets – similar to diamonds formed on Earth - at least the size of Mercury. (PNAS, https://www.pnas.org/content/early/2020/09/22/1919067117 )

    It is estimated that over 10 million asteroids are circling the Earth in the asteroid belt. They are relics from the early days of our solar system, when our planets formed out of a large cloud of gas and dust rotating around the sun. When asteroids are cast out of orbit, they sometimes plummet towards Earth as meteoroids. If they are big enough, they do not burn up completely when entering the atmosphere and can be found as meteorites. The geoscientific study of such meteorites makes it possible to draw conclusions not only about the evolution and development of planets in the solar system but also their extinction.

    A special type of meteorites are ureilites. These are fragments of a larger celestial body – probably a minor planet – which was smashed to pieces through violent collisions with other minor planets or large asteroids. Ureilites often contain large quantities of carbon, among others in the form of graphite or nanodiamonds. The diamonds on the scale of over 0.1 and more millimetres now discovered cannot have formed when the meteoroids hit the Earth. Impact events with such vast energies would make the meteoroids evaporate completely. That is why it was so far assumed that these larger diamonds – similar to those in the Earth’s interior – must have been formed by continuous pressure in the interior of planetary precursors the size of Mars or Mercury.

    Together with scientists from Italy, the USA, Russia, Saudi Arabia, Switzerland and the Sudan, researchers from Goethe University have now found the largest diamonds ever discovered in ureilites from Morocco and the Sudan and analysed them in detail. Apart from the diamonds of up to several 100 micrometres in size, numerous nests of diamonds on just nanometre scale as well as nanographite were found in the ureilites. Closer analyses showed that what are known as londsdalite layers exist in the nanodiamonds, a modification of diamonds that only occurs through sudden, very high pressure. Moreover, other minerals (silicates) in the ureilite rocks under examination displayed typical signs of shock pressure. In the end, it was the presence of these larger diamonds together with nanodiamonds and nanographite that led to the breakthrough.

    Professor Frank Brenker from the Department of Geosciences at Goethe University explains:
    “Our extensive new studies show that these unusual extraterrestrial diamonds formed through the immense shock pressure that occurred when a large asteroid or even minor planet smashed into the surface of the ureilite parent body. It’s by all means possible that it was precisely this enormous impact that ultimately led to the complete destruction of the minor planet. This means – contrary to prior assumptions – that the larger ureilite diamonds are not a sign that protoplanets the size of Mars or Mercury existed in the early period of our solar system, but nonetheless of the immense, destructive forces that prevailed at that time.”

    The international research team comprises scientists from the following institutions:

    Department of Geosciences, University of Padova, Italy
    Department of Geosciences, Goethe University, Frankfurt, Germany
    Lunar and Planetary Institute, USRA, Houston, Texas, USA
    Department of Earth and Environmental Sciences, University of Pavia, Italy
    Astromaterials Research and Exploration Science Division, Jacobs JETS, Johnson Space Center, NASA, Houston, Texas, USA
    CNR Institute of Geosciences and Earth Resources, Padua, Italy
    Vereshchagin Institute for High Pressure Physics RAS, Troitsk, Moscow, Russia
    NASA Astromaterials Acquisition and Curation Office, Johnson Space Center, NASA, Houston, Texas, USA
    Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy
    Saudi Aramco R&D Center, Dhahran, Saudi Arabia
    Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
    SETI Institute, Mountain View, California, USA
    Department of Physics and Astronomy, University of Khartoum, Khartoum, Sudan

    Images to download:
    Picture1: Planetary collision
    Caption: Artist’s impression of the collision of two protoplanets.Credits: NASA/SOFIA/Lynette Cook
    https://www.nasa.gov/image-feature/what-happens-when-planets-collide

    Picture2: Rock sample from ureilite minor planet
    Caption: Photo of a rock sample from the ureilite minor planet, found as a meteorite in the Sahara. Length of the fragments about 2cm. Credits: Oliver Christ https://www.muk.uni-frankfurt.de/92537913

    Picture3: Colour coded Raman spectroscopic map of the ureilite studied. diamond (red), graphite (blue). Credits: Cyrena Goodrich http://www.uni-frankfurt.de/92538164


    Wissenschaftliche Ansprechpartner:

    Professor Frank E. Brenker
    Department of Geosciences / NanoGeoscience
    Goethe University
    Tel: +49 69 798 40134
    f.brenker@em.uni-frankfurt.de


    Originalpublikation:

    Fabrizio Nestola, Cyrena A. Goodrich, Marta Morana, Anna Barbaro, Ryan S. Jakubek, Oliver Christ, Frank E. Brenker, Maria C. Domeneghetti, Maria C. Dalconi, Matteo Alvaro, Anna M. Fioretti, Konstantin Litasov, Marc D. Fries, Matteo Leoni, Nicola P. M. Casati, Peter Jenniskens, Muawia H. Shaddad: Impact shock origin of diamonds in ureilite meteorites. Proceedings of the National Academy of Science https://www.pnas.org/content/early/2020/09/22/1919067117


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Geowissenschaften, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).