idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.10.2020 14:00

Rasch durch ein Gedränge

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Physik: Veröffentlichung in Physical Review Letters

    Biofilamente breiten sich deutlich rascher aus, wenn sie in ein Gedränge geraten. Das zeigen Computersimulationen von Physikern und Biophysikern der Heinrich-Heine-Universität Düsseldorf (HHU) und der Universität Innsbruck. Demnach hemmt ein dichtes Netzwerk von langen Fasern deren Rotation und fördert so unerwarteter Weise deren weitere Ausbreitung. Diese Ergebnisse stellen sie in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters vor.

    Das Inneren von Zellen wird vom sogenannten Zytoskelett strukturiert. Dieses besteht aus einem dichten Netzwerk von Proteinfasern, den sogenannten Filamenten. Die Dynamik dieser selbst-angetriebenen Filamente steuert wesentliche Funktionen der Zelle.

    Bisher konnte die Wissenschaft die Bewegung von Filamenten im Inneren von Zellen nicht präzise beschreiben. Dr. Suvendu Mandal, Dr. Christina Kurzthaler und Prof. Dr. Thomas Franosch vom Institut für Theoretische Physik der Universität Innsbruck und Prof. Dr. Hartmut Löwen vom Institut für Theoretische Physik II der HHU konnten nun mit Hilfe von Computersimulationen zeigen, dass die Ausbreitung umso rascher erfolgt, je dichter die Filamente in der Zelle beieinanderliegen. Diese zunächst nicht eingängige Erkenntnis eröffnet neue Möglichkeiten für die Kontrolle sich bewegender Objekte.

    Überraschendes Verhalten

    Am Computer simulierten die Forscherinnen und Forscher eine Lösung schwimmender Filamente. „Zwischen Kollisionen mit Nachbarn schwimmt jedes Filament mit konstanter Geschwindigkeit in Richtung seiner Längsachse, wobei sich die Richtung mit der Orientierung der Faser ändern kann“, beschreibt Kurzthaler, die heute als Postdoktorandin an der Princeton University forscht. „Unsere Simulationen zeigen, dass sich in Regionen mit sehr vielen Filamenten deren Verhalten verändert. Durch die Wechselwirkung mit den Nachbarn werden die Filamente am Rotieren gehindert. So halten die Fasern eine konstantere Schwimmrichtung ein und breiten sich stärker als in dünn besetzten Regionen aus“, ergänzt Mandal, der heute an der HHU tätig ist. Die Forscher zeigen, dass die Ausbreitungsrate in überfüllten Regionen um mehr als eine Größenordnung höher sein kann und erklären das Phänomen mit Hilfe einer Skalentheorie.

    Besseres Verständnis realer Systeme

    Mit den Ergebnissen liefert das Forschungsteam eine Grundlage für ein besseres Verständnis des Transports in realen biologischen Systemen wie dem Zellinneren, in Biofilmen und Böden. Sie stoßen aber auch neue Untersuchungen von komplexen Medien an, die aus Objekten unterschiedlicher Art und Größe bestehen. Die Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und von der Deutschen Forschungsgemeinschaft (DFG) finanziell unterstützt.


    Originalpublikation:

    Crowding-Enhanced Diffusion: An Exact Theory for Highly Entangled Self-Propelled Stiff Filaments. Suvendu Mandal, Christina Kurzthaler, Thomas Franosch, and Hartmut Löwen. Phys. Rev. Lett. 125, 138002

    DOI: 10.1103/PhysRevLett.125.138002


    Bilder

    Proteinfasern geben Zellen eine Struktur. Wie sie sich im Getümmel des Zellinneren bewegen, haben Forscherinnen und Forscher anhand von Computersimulationen und einer analytischen Theorie untersucht.
    Proteinfasern geben Zellen eine Struktur. Wie sie sich im Getümmel des Zellinneren bewegen, haben Fo ...

    Y tambe/Wikimedia Commons, https://creativecommons.org/licenses/by-sa/3.0/deed.de


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Proteinfasern geben Zellen eine Struktur. Wie sie sich im Getümmel des Zellinneren bewegen, haben Forscherinnen und Forscher anhand von Computersimulationen und einer analytischen Theorie untersucht.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).