TreeSatAI – Künstliche Intelligenz mit Erdbeobachtungs- und Multi-Source Geodaten

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Imagefilm
Science Video Project



Teilen: 
04.11.2020 11:22

TreeSatAI – Künstliche Intelligenz mit Erdbeobachtungs- und Multi-Source Geodaten

Udo Urban DFKI Kaiserslautern
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Das Ziel des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts TreeSatAI ist die Entwicklung von Methoden mit Künstlicher Intelligenz für das Monitoring von Wäldern und Baumbeständen auf lokaler, regionaler und globaler Ebene. Mithilfe frei zugänglicher Geodaten aus verschiedenen Quellen (Fernerkundungsdaten, administrativen Informationen, Social Media, Mobile Apps, Monitoring-Bibliotheken, offene Bilddatenbanken) werden Prototypen für die Deep Learning basierte Extraktion und Klassifikation von Baum- und Bestandsmerkmalen für vier verschiedene Anwendungsfälle aus den Bereichen Forst-, Naturschutz- und Infrastrukturmonitoring entwickelt.

Fernerkundungsdaten diverser Satellitenmissionen der ESA und NASA, Luftbilddaten sowie Geodaten über den Zustand der Umwelt stehen zunehmend kostenfrei und in großem Umfang zur Verfügung. Gleichzeitig ermöglichen Texte, Fotos und Videos aus Social Media Plattformen wie Flickr, Twitter oder Open Street Map den Zugang zu weiteren Informationen über unsere Umwelt. Eine händische Auswertung der sich ergebenden riesigen Datenmengen wäre jedoch zu zeit- und arbeitsintensiv.

Das Deep Learning Kompetenzzentrum des DFKI und der Forschungsbereich Smarte Daten und Wissensdienste entwickeln bereits seit längerer Zeit KI-Verfahren zur Analyse von Luft- und Satellitenaufnahmen, die sowohl eine lokale Auswertung als auch deren globale Analyse ermöglichen sollen. In TreeSatAI wollen die Wissenschaftler neben CNNs (Convolutional Neural Networks) auch spezialisierte LSTM-Modelle (Long Short-Term Memory) aus dem Bereich Deep Learning einsetzen, um die zeitliche Entwicklung von Waldgebieten automatisiert auf einer großen Fläche zu ermöglichen und so Umwelt- und Waldexperten zu unterstützen.

Eine der großen Herausforderungen hierbei ist die Beschaffung ausreichender, qualitativ hochwertiger Trainingsdaten zum Trainieren der Algorithmen sowie die Evaluation der sich ergebenden Modelle durch Experten aus dem Forst und Umweltbereich. Im Projekt werden daher die verschiedenen Kompetenzen der Projektpartner genutzt und miteinander kombiniert, um die zahlreichen Herausforderungen des ambitionierten Projektes meistern zu können.

Pressekontakt:
Christian Heyer
Leiter Unternehmenskommunikation DFKI Kaiserslautern
E-Mail: Christian.Heyer@dfki.de
Tel.: +49 631 20575 1710


Wissenschaftliche Ansprechpartner:

Dr. Jörn Hees
Forschungsbereich Smarte Daten und Wissensdienste
Kompetenzzentrum Deep Learning
E-Mail: Joern.Hees@dfki.de
Tel.: +49 631 20575 1180


Ergänzung vom 04.11.2020

Partner:
• TU Berlin: Geoinformation in der Umweltplanung (Konsortialführung)
• TU Berlin: Remote Sensing Image Analysis Group
• LiveEO GmbH
• LUP GmbH
• Vision Impulse GmbH

Laufzeit:
01.06.2020 - 31.05.2022

Förderkennzeichen: BMBF 01IS20014D


Merkmale dieser Pressemitteilung:
Journalisten
Informationstechnik, Tier / Land / Forst
überregional
Forschungsprojekte
Deutsch


Eine abflugbereite Drohne für die Feldtests


Zum Download

x

Durch Trockenstress und Borkenkäfer geschädigte Waldflächen im Harz


Zum Download

x

Hilfe

Die Suche / Erweiterte Suche im idw-Archiv
Verknüpfungen

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

Klammern

Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

Wortgruppen

Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

Auswahlkriterien

Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).