idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
10.11.2020 12:24

Carbin – eine außergewöhnliche Form des Kohlenstoffs

Susanne Langer Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Welche photophysikalischen Eigenschaften hat Carbin? Das haben Wissenschaftlerinnen und Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), der kanadischen University of Alberta und der schweizerischen Ecole Polytechnique Fédérale de Lausanne gemeinsam untersucht – und ein tiefergreifendes Verständnis für diese außergewöhnliche Form des Kohlenstoffs entwickelt.

    „Kohlenstoff nimmt eine absolute Sonderstellung im Periodensystem der Elemente ein und bildet mit seiner extrem großen Zahl an chemischen Verbindungen die Grundlage allen Lebens“, sagt Prof. Dr. Dirk M. Guldi vom Lehrstuhl für Physikalische Chemie I der FAU. „Die bekanntesten Beispiele sind dreidimensionaler Graphit und Diamant. Aber auch zweidimensionales Graphen, eindimensionale Nanoröhren und nulldimensionale Nanodots eröffnen neue Möglichkeiten für elektronische Anwendungen der Zukunft.“

    Material mit außergewöhnlichen Eigenschaften
    Carbin ist eine Modifikation des Kohlenstoffs, ein sogenanntes Allotrop. Es wird synthetisch hergestellt, besteht aus einer einzigen sehr langen Kette von Kohlenstoffatomen und gilt als Material mit äußerst interessanten elektronischen und mechanischen Eigenschaften. „Doch Kohlenstoff zeigt in dieser Form eine hohe Reaktivität“, betont Prof. Dr. Clémence Corminboeuf von der EPFL. „So lange Ketten sind äußerst instabil und entsprechend schwierig zu charakterisieren.“ Dem internationalen Forschungsteam ist diese Charakterisierung über Umwege dennoch gelungen. Die Wissenschaftlerinnen und Wissenschaftler um Prof. Dr. Dirk M. Guldi von der FAU, Prof. Dr. Clémence Corminboeuf und Prof. Dr. Holger Frauenrath von der EPFL sowie Prof. Dr. Rik R. Tykwinski von der University of Alberta haben bisherige Annahmen hinsichtlich der photophysikalischen Eigenschaften von Carbin hinterfragt und neue Erkenntnisse gewonnen.
    Das Forschungsteam stützte sich dabei vor allem auf sogenannte Oligoine: „Wir können Carbin-Ketten in definierter Länge herstellen und vor Zersetzung schützten, indem wir an den Kettenenden eine Art Stoßstange aus Atomen einbauen. Diese chemisch ausreichend stabile Verbindungklasse wird Oligoine genannt“, erklärt Prof. Dr. Holger Frauenrath von der EPFL.

    Optische Bandlücke nutzen
    Die Wissenschaftlerinnen und Wissenschaftler haben gezielt zwei Serien von Oligoinen hergestellt – mit unterschiedlicher Symmetrie und mit bis zu 24 alternierenden Dreifach- und Einfachbindungen. Im Anschluss daran verfolgten sie mittels Spektroskopie die Deaktivierungsprozesse der jeweiligen Moleküle von der Anregung durch Licht bis hin zur vollständigen Relaxation. „So konnten wir den gesamten Deaktivierungsweg der Oligoine aus einem angeregten Zustand zurück in den ursprünglichen Grundzustand mechanistisch erfassen – und dank der gewonnen Daten eine Vorhersage über die Eigenschaften von Carbin treffen“, bilanziert Prof. Dr. Rik R. Tykwinski von der University of Alberta.
    Eine wichtige Erkenntnis dabei: Die sogenannte optische Bandlücke erwies sich als deutlich kleiner als bisher angenommen. Die Bandlücke ist ein Begriff aus der Halbleiterphysik und beschreibt die elektrische Leitfähigkeit von Kristallen, Metallen und Halbleitern. „Das ist ein Riesenvorteil“, sagt Prof. Guldi, „Je kleiner die Bandlücke ist, desto weniger Energie muss zugeführt werden, um Strom zu leiten.“ Diese wichtige Eigenschaft besitzt zum Beispiel Silizium, das aktuell in Mikrochips ebenso steckt wie in Solarzellen. Carbin könnte – dank seiner ausgezeichneten photophysikalischen Eigenschaften – eines Tages Silizium ergänzen.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Dirk M. Guldi
    Lehrstuhl für Physikalische Chemie I der FAU
    E-Mail: dirk.guldi@fau.de


    Originalpublikation:

    10.1038/s41467-020-18496-4


    Bilder

    Prof. Dr. Dirk Guldi, Lehrstuhl für Physikalische Chemie 1 der FAU
    Prof. Dr. Dirk Guldi, Lehrstuhl für Physikalische Chemie 1 der FAU
    Erich Malter
    FAU


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Prof. Dr. Dirk Guldi, Lehrstuhl für Physikalische Chemie 1 der FAU


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).