idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.08.2021 11:25

New profile reveals appearance, number and activity level of T cells in Covid-19 patients

Lisa Pietrzyk Corporate Communications Center
Technische Universität München

    T cells play a decisive role in fighting the coronavirus and preventing infected individuals from becoming seriously ill. They identify and fight the virus directly within the infected cells. A team of researchers working in Munich have produced a precise profile of the T cells that respond to SARS-CoV-2 and described them at various stages of the illness. This novel methodological approach may in the future also help to assess the efficacy of SARS-CoV-2 vaccines or in the development of T cell-based treatments for serious cases.

    T cells play an important role in the human immune system. The blood cells classified as lymphocytes are formed in the bone marrow. From there they travel through blood vessels to the thymus gland in the breastbone. They then form receptors on their cellular surface to identify and fight foreign matter. The T cells also stimulate the formation of B cells, which produce antibodies to attack viruses. Virus-specific immune responses by T cells can be detected in the blood months or even years after an infection.

    In view of the millions of people infected by Covid-19 and the emerging fourth wave of the pandemic, it is of great interest to learn more about the T cells that fight the virus. The T cells are enormously important for protecting against a SARS-CoV-2 infection or preventing serious illness. “We’re especially interested in how many of these specific T cells are present in the body of an infected person, the qualities that enable these cells to respond to the virus, and how long the T cells last,” says Dr. Kilian Schober of the TUM Institute for Medical Microbiology, Immunology and Hygiene.

    Identifying the T cells that fight SARS-CoV-2

    An interdisciplinary team of researchers at TUM, Helmholtz Zentrum München and LMU Munich has now succeeded in developing a method for finding the T cell receptors that respond to SARS-CoV-2. The team divided blood samples taken from seriously infected Covid-19 patients into two pools. The samples in the first pool were then stimulated with the virus antigen, with the second pool left untreated. “This enabled us to identify the T cells that responded to the virus and characterize a precise phenotype,” says Dr. Herbert Schiller, group leader at Helmholtz Zentrum München. “So we now have a profile to identify a T cell that fights SARS-CoV-2.”

    T cells show whether the infection is still active

    The Munich researchers now know what T cells look like that have recently been exposed to the virus-fighting antigen. Similar T cells were found not only in the blood, but also in the respiratory tract of patients. This made it possible to distinguish between cells still in the “hot phase” and those that have become dormant (“cold”) – in other words, whether a patient is still fighting the infection or has already overcome it.

    The results of the study are highly significant. They enable us to distinguish between SARS-CoV-2-specific T cells in different organs (blood or lungs), different activation states (antigen seen recently or not) and in different illness contexts (seriously ill/virus positive or mildly ill/virus negative). “We now have a better understanding of the appearance of T cells targeting SARS-CoV-2 and how numerous they are in the blood and respiratory tract,” says Prof. Dirk Busch, the Director of the TUM Institute for Medical Microbiology, Immunology and Hygiene. “In the future, this process can probably also be used to determine how many protective T cells are present after a vaccination.”

    Providing T cells with receptors to save seriously ill patients

    The team working with lab director Prof. Dirk Busch also succeeded in modifying T cells of healthy individuals to enable a first response to SARS-CoV-2. “That shows that it might be possible to equip the T cells of patients with receptors to fight the virus more effectively,” says Kilian Schober. This is the first step towards an adoptive T cell treatment for seriously ill Covid-19 patients. The process may also be applicable to other diseases through better characterization of T cell responses – an important hope for treatments of autoimmune conditions and cancers.

    Further information:

    Along with Prof. Dirk Busch, Dr. Kilian Schober and Dr. Herbert B. Schiller, the project was headed by Dr. Benjamin Schubert, Research Group Leader at Helmholtz Zentrum München, and Prof. Fabian J. Theis, Chair of Mathematical Modelling of Biological Systems at TUM and head of the Institute for Computational Biology at Helmholtz Zentrum München. Dr. Kilian Schober is now conducting research at the Universitätsklinikum Erlangen and the Friedrich-Alexander-Universität Erlangen-Nürnberg.


    Wissenschaftliche Ansprechpartner:

    Dr. Kilian Schober
    Institute of Medical Microbiology, Immunology and Hygiene
    Universitätsklinikum Erlangen
    Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg
    kilian.schober@uk-erlangen.de

    Prof. Dirk Busch
    Institute for Medical Microbiology, Immunology and Hygiene
    Technical University of Munich (TUM)
    dirk.busch@tum.de

    phone: +49 89 289 22562


    Originalpublikation:

    Fischer, D.S., Ansari, M., Wagner, K.I. et al. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’. Nature Communications 12, 4515 (2021).
    DOI: 10.1038/s41467-021-24730-4


    Weitere Informationen:

    https://www.tum.de/nc/en/about-tum/news/press-releases/details/36882/


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Medizin
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).