idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.11.2021 07:34

Pathomechanisms in heart disease discovered

Dr. Thomas Bauer Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfälische Wilhelms-Universität Münster

    The largest protein in the human body, titin, enables elastic movements of our muscles, including the heart. Mutations in the titin gene (TTN) that impair this function and lead to heart muscle disease. The pathomechanisms behind this – i.e. why TTN mutations trigger disease – were unclear until now. A team of experts led by Prof. Wolfgang Linke of the University of Münster has now investigated these pathomechanisms in more detail and has gained ground-breaking insights.

    Titin is a “titanically large” protein – the largest in the human body – which enables elastic movements of our muscles, including the heart. Mutations in the titin gene (TTN) that impair this function are the most frequent cause of a heart muscle disease known as dilated cardiomyopathy (DCM), which is characterized by a weak pump function. However, it had not been known why TTN mutations cause the disease, that is, which pathomechanisms underlie DCM. A team of experts headed by Prof. Wolfgang Linke, Director of the Institute of Physiology II at the University of Münster, has gained ground-breaking insights into the pathomechanisms of DCM due to a TTN mutation, which have now been published in the journal Science Translational Medicine.

    “DCM can have various causes but the most frequent one is a special type of TTN mutation called truncation” says project leader Wolfgang Linke. “In patients with such a TTN-truncating variant or TTNtv, one of the two TTN alleles is shortened, whereas the other allele usually is healthy.” Although TTNtv have been known to cause DCM for nearly a decade, it took until now to uncover the key pathomechanisms of the disease, “in what has easily been some six years of intense research on the topic”, Wolfgang Linke says.

    Collaborating with the Heart and Diabetes Centre in Bad Oeynhausen, the team studied over 100 tissue samples from endstage failing human DCM hearts and discovered about 20% with a TTNtv. By measuring the content of normal titin proteins, the scientists found that patient hearts with a TTNtv contained less normal titin than both DCM hearts without a TTNtv and nonfailing hearts from organ donors. The loss of normal titin protein caused a reduction in the number of contractile units, explaining the reduced contractile force of TTNtv-DCM hearts. “Although the healthy TTN allele produces even more normal titin than usual, it cannot compensate for the lack of a second healthy allele,” Wolfgang Linke explains.

    For the first time, the team was also able to demonstrate that TTNtv patient hearts contain truncated titin proteins. Wolfgang Linke adds: “We showed that these truncated proteins are useless, because they are not incorporated into the contractile units of the cardiac muscle cells.” Instead, the truncated proteins are collected in intracellular blobs or aggregates. “Just as in neurodegenerative diseases such as Alzheimer’s, these aggregated proteins could be toxic.” Fittingly, the research team also discovered that the heart muscle cells of patients with TTNtv-DCM have a problem with the intracellular protein quality-control system, which usually “cleans up” defective or aged proteins. This system appeared to be overwhelmed by the large amounts of truncated titin protein, and so did not function properly.

    Wolfgang Linke is convinced that the “study breaks new ground in this field”. Next to elucidating the pathomechanisms, his team also suggested possible treatment strategies for affected patients. To this end, they used human cardiac muscle cell cultures obtained from TTNtv patient tissue reprogrammed into stem cells. “With the help of our collaborators in Göttingen, we could show that the cultured cells with a TTNtv displayed the same pathomechanisms as the TTNtv patient hearts, and that inhibition of the protein quality-control system worsened the situation. Importantly, cell cultures with a TTNtv developed less contractile force than healthy controls but gene editing using CRISPR-Cas9 repaired the mutation and rescued contractile force. Although genetic editing is not yet possible in this form in patients, our study shows that patients could, in principle, be cured using this approach”, Wolfgang Linke explains.

    The study was produced in close cooperation with the Cardiology Department at Münster University Hospital, the Heart and Diabetes Centre in Bad Oeynhausen and the Göttingen University Medical Centre, where Linke holds a guest professorship. The work was supported by two funding lines of the Faculty of Medicine at Münster (IZKF and MedK), the German Research Foundation (Collaborative Research Centre 1002) and the German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung).


    Wissenschaftliche Ansprechpartner:

    Prof. Wolfgang Linke
    Institut für Physiologie II, University of Münster
    Phone: 0049 251 8355328
    E-Mail: wlinke@uni-muenster.de


    Originalpublikation:

    Andrey Fomin et al. (2021): Truncated titin proteins in dilated cardiomyopathy, Science Translational Medicine, 13, 618. Doi: 10.1126/scitranslmed.abd3079


    Weitere Informationen:

    https://www.medizin.uni-muenster.de/physiologieii/start.html Institut für Physiologie II


    Bilder

    Heart tissue from a patient with chronic heart disease due to dilated cardiomyopathy. Red staining indicates titin, green another protein of the contractile units, and blue the nuclei. The holes are indicative of disease-induced tissue damage.
    Heart tissue from a patient with chronic heart disease due to dilated cardiomyopathy. Red staining i ...

    AG Linke

    Titin research project leader Prof. Wolfgang Linke (right) with his team and collaborators: Prof. Holger Reinecke, Lina Folsche, Franziska Koser, Andreas Unger, Anna Hucke and Anastasia Hobbach (from left).
    Titin research project leader Prof. Wolfgang Linke (right) with his team and collaborators: Prof. Ho ...

    privat


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Medizin
    überregional
    Forschungsergebnisse
    Englisch


     

    Heart tissue from a patient with chronic heart disease due to dilated cardiomyopathy. Red staining indicates titin, green another protein of the contractile units, and blue the nuclei. The holes are indicative of disease-induced tissue damage.


    Zum Download

    x

    Titin research project leader Prof. Wolfgang Linke (right) with his team and collaborators: Prof. Holger Reinecke, Lina Folsche, Franziska Koser, Andreas Unger, Anna Hucke and Anastasia Hobbach (from left).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).