idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.11.2021 09:00

Sufficient energy supply decisive for nerve development

Dr. Christina Hoppenbrock Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfälische Wilhelms-Universität Münster

    Using the fruit fly Drosophila as a model, an interdisciplinary team of researchers at University of Münster looked into whether energy is needed for the developmental degradation of nerve connections which takes place in the flies during metamorphosis.

    The bodies of animals and humans are innervated by a network of nerve cells which are connected through long extensions. The nerve cells use these so-called axons and dendrites to communicate with one another. During early development, nerve cells grow a large number of axons and dendrites. To make the connections specific, redundant extensions are removed at a later stage in a process called “pruning”. Using the fruit fly Drosophila melanogaster as a model, an interdisciplinary team of researchers at the University of Münster asked whether energy (in the form of adenosine triphosphate (ATP)) is needed for pruning, which takes place in the flies during metamorphosis. The results of the study have now been published in the journal “Cell Reports”.

    Some background: ATP is the energy currency of all living cells. Because it is so important, there are many different ways of producing it – for example, through the process of glycolysis from glucose or by so-called oxidative phosphorylation from various other nutrients. “The reason that we asked whether ATP is important for pruning comes from observations of the fruit fly,” explains Marco Marzano, a member of the team led by Dr. Sebastian Rumpf at the Institute of Neuro- and Behavioural Biology and lead author of the study. “Firstly, in Drosophila most pruning happens during the pupal stage when the animals do not feed and have to be very careful with their stored resources. And secondly, a fundamental question: Is energy needed when a biological structure breaks down?”

    Marzano observed that nerve cells did not properly prune their dendrites when they lacked an important regulator of energy metabolism. This factor – the so-called AMP-activated protein kinase (AMPK) – normally safeguards cells from consuming too much energy. With the help of members of Prof. Erez Raz’s research group at the Centre for Molecular Biology of Inflammation, Marzano set up a sensor system which enabled him to measure the ATP content in the nerve cells. In this way he was able to show that AMPK specifically promotes ATP generation through oxidative phosphorylation. Another collaboration with the “Medical Cell Biology” team led by Prof. Michael Krahn (Faculty of Medicine and Münster University Hospital) made it possible to measure the activity of AMPK directly, revealing that AMPK is activated by an important development regulator. “This indicates that a constant supply of energy seems to be especially important for pruning,” says Sebastian Rumpf. “One reason for this may be that some of the pruning enzymes need to be produced just before the process.”

    Interestingly, the team was able to demonstrate that the defects in nerve development were intensified by malnutrition. The results thus show important connections between nerve development, cellular energy metabolism and the general energy supply. It was already known from studies on neurodegenerative diseases that nerve cells can atrophy when their energy balance is disturbed. This new study shows that sufficient, precisely regulated energy supply is already decisive for nerve development at an early stage – and not only for the growth of nerve processes, but also for their degradation.

    For their studies, the researchers combined modern microscopy techniques – such as sensors based on Förster resonance energy transfer (FRET), – with molecular Drosophila genetics.

    Funding for the work was provided by the German Research Foundation, the “Cells in Motion” Cluster of Excellence and the Collaborative Research Centre SFB 1348.


    Wissenschaftliche Ansprechpartner:

    Dr. Sebastian Rumpf
    University of Münster
    Institute for Neuro- and Behavioural Biology
    Phone: +49 251 83-21123
    Mail: sebastian.rumpf@uni-muenster.de


    Originalpublikation:

    Marco Marzano, Svende Herzmann, Leonardo Elsbroek, Erez Raz, Michael P. Krahn, Sebastian Rumpf (2021): AMPK adapts metabolism to developmental energy requirement during dendrite pruning in Drosophila. Cell Reports 37, 7; 110024, November 16, DOI: https://doi.org/10.1016/j.celrep.2021.110024


    Bilder

    Microscopic measurement of ATP consumption in two different Drosophila neurons over time (from left). Red symbolises a high, green a low ATP concentration.
    Microscopic measurement of ATP consumption in two different Drosophila neurons over time (from left) ...

    WWU - AG Sebastian Rumpf


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie
    überregional
    Forschungsergebnisse
    Englisch


     

    Microscopic measurement of ATP consumption in two different Drosophila neurons over time (from left). Red symbolises a high, green a low ATP concentration.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).