idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.12.2021 16:17

Das schwingende Matterhorn

Beate Kittl Medienkontakt WSL Birmensdorf
Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

    Wie Brücken und Hochhäuser schwingen auch grosse Berge. Ein internationales Forschungsteam hat diese Resonanzschwingungen nun am Matterhorn gemessen und mittels Computersimulationen sichtbar gemacht.

    Das Matterhorn wirkt wie ein unverrückbarer, massiver Berg, der seit Tausenden von Jahren in der Landschaft über Zermatt thront. Eine soeben in der Fachzeitschrift «Earth and Planetary Science Letters» veröffentlichte Studie zeigt nun aber, dass dieser Eindruck täuscht. Ein internationales Forschungsteam hat nachgewiesen, dass das Matterhorn dauernd leicht in Bewegung ist: Der Gipfel schwingt in gut zwei Sekunden um wenige Nano- bis Mikrometer hin und her, angeregt durch seismische Wellen in der Erde. Diese werden durch natürliche Quellen wie die Gezeiten, die Meeresbrandung, den Wind und Erdbeben oder durch menschliche Aktivitäten erzeugt.

    Jedes Objekt schwingt, wenn es angeregt wird, mit bestimmten Frequenzen, wie etwa eine Stimmgabel oder die Saiten einer Gitarre. Die sogenannten Eigenfrequenzen hängen in erster Linie von der Geometrie des Objekts und seinen Materialeigenschaften ab. Das Phänomen wird auch bei Brücken, Hochhäusern und sogar bei Bergen beobachtet. «Wir wollten wissen, ob sich solche Schwingungen auch an einem grossen Berg wie dem Matterhorn nachweisen lassen», sagt Samuel Weber, der die Studie während eines Postdoktorats an der Technischen Universität München (TUM) durchführte und mittlerweile beim WSL-Institut für Schnee- und Lawinenforschung SLF arbeitet. Er betont, dass die interdisziplinäre Zusammenarbeit mit Forschenden des Schweizerischen Erdbebendienstes an der ETH Zürich, des Instituts für Technische Informatik und Kommunikationsnetze der ETH Zürich sowie der Geohazards Research Group der Universität Utah (USA) für den Erfolg dieses Projekts besonders wichtig war.

    Hochalpine Messeinrichtungen

    Für die Studie installierten die Wissenschaftler am Matterhorn mehrere Seismometer, eines davon unmittelbar am Gipfel auf 4470 Meter über Meer und ein weiteres im Solvay-Biwak, einer Notunterkunft am Nordostgrat, besser bekannt als Hörnligrat. Eine weitere Messstation am Fuss des Berges, diente als Referenz. Die grosse Erfahrung von Jan Beutel (ETH Zürich/Universität Innsbruck) und Samuel Weber mit Einrichtungen zur Messung von Felsbewegungen im Hochgebirge half dem Team beim Aufbau des Messnetzes. Die Daten werden heute automatisch an den Erdbebendienst übermittelt und für spezifische Analysen verwendet.

    Die Seismometer zeichneten alle Bewegungen des Berges mit hoher Auflösung auf. Durch eine 80-fache zeitliche Beschleunigung wurden die aufgezeichneten Schwingungen für das menschliche Ohr hörbar gemacht (Tonbeispiel 1 Hintergrund, Tonbeispiel 2 Erdbeben). Aus den Messdaten leitete das Team Frequenz und Richtung der Resonanzschwingungen ab. Die Messungen zeigen, dass das Matterhorn mit einer Frequenz von 0.43 Hertz ungefähr in Nord-Süd-Richtung und mit einer zweiten, ähnlichen Frequenz in Ost-West-Richtung schwingt (siehe Animation unten).

    Verstärkte Schwingungen am Gipfel

    Im Vergleich zur Referenzstation am Fuss des Berges waren die gemessenen Bewegungen auf dem Gipfel bis zu 14-fach verstärkt, betrugen aber bei Anregung durch die seismische Bodenunruhe auch dort lediglich wenige Nanometer bis Mikrometer. Die Verstärkung der Bodenbewegungen mit zunehmender Höhe lässt sich dadurch erklären, dass der Gipfel frei schwingen kann, während der Fuss des Berges fixiert ist. Man kann das mit einem Baum im Wind vergleichen, bei dem sich die Krone stärker als der Stamm bewegt. Verstärkungen der Bodenbewegung am Matterhorn konnten auch bei Erdbeben gemessen werden. Die Analyse der seismischen Bodenunruhe und der Erdbebenanregungen wird beispielsweise verwendet, um Fels- und Hanginstabilitäten in Bezug auf ihr Verhalten bei Erdbeben zu beurteilen. Jeff Moore von der Universität Utah, der die Studie am Matterhorn initiiert hat, erklärt: «Wir vermuten, dass Gebiete, in denen die Bodenvibrationen verstärkt werden, anfälliger für Rutschungen und Felsstürze sein könnten, wenn ein Berg von einem Erdbeben erschüttert wird.»

    Solche Schwingungen sind keine Eigenart des Matterhorns. Es ist bekannt, dass viele Berge in ähnlicher Art und Weise schwingen. Forschende des Erdbebendienstes führten dazu Vergleichsmessungen am Grossen Mythen durch. Dieser Gipfel in der Zentralschweiz besitzt eine ähnliche Form wie das Matterhorn, ist aber deutlich kleiner. Wie erwartet schwingt der Grosse Mythen mit einer rund 4-mal höheren Frequenz als das Matterhorn, denn kleinere Objekte schwingen grundsätzlich mit höheren Frequenzen. Die Forschenden der Universität Utah haben die Resonanzschwingungen des Matterhorns und des Grossen Mythen im Computer simuliert und konnten sie dadurch sichtbar machen. Die US-Wissenschaftler hatten bisher vor allem kleinere Objekte untersucht wie die Felsbögen im Arches-Nationalpark in Utah. «Es war spannend zu sehen, dass unsere Simulationen auch für einen grossen Berg wie das Matterhorn funktionieren und die Messresultate diese bestätigen», sagt Jeff Moore.


    Wissenschaftliche Ansprechpartner:

    Dr. Samuel Weber
    Wissenschaftlicher Mitarbeiter
    Alpine Umwelt und Naturgefahren
    samuel.weber@slf.ch
    +41 81 417 03 76
    Davos


    Originalpublikation:

    Weber, S.; Beutel, J.; Häusler, M.; Geimer, P.R.; Fäh, D.; Moore, J.R., 2021: Spectral amplification of ground motion linked to resonance of large-scale mountain landforms. Earth and Planetary Science Letters, doi: 10.1016/j.epsl.2021.117295


    Weitere Informationen:

    https://www.slf.ch/de/2021/12/das-schwingende-matterhorn.html
    http://--> Medienmitteilung des WSL-Instituts für Schnee- und Lawinenforschung SLF


    Bilder

    Forschende bei der Installation der Referenzstation in einem Gletschervorfeld am Fuss des Matterhorns. Die beiden Messstationen am Matterhorn befinden sich auf 4470 m ü. M. knapp unterhalb des Gipfels und auf 4003 m ü. M. im Solvaybiwak am am Hörnligrat.
    Forschende bei der Installation der Referenzstation in einem Gletschervorfeld am Fuss des Matterhorn ...
    J. Moore
    University of Utah

    Seismometer auf 4470 m ü. M. unmittelbar unterhalb des Matterhorn-Gipfels
    Seismometer auf 4470 m ü. M. unmittelbar unterhalb des Matterhorn-Gipfels
    Samuel Weber, SLF
    Samuel Weber, SLF


    Anhang
    attachment icon WSL-Institut für Schnee- und Lawinenforschung SLF

    Merkmale dieser Pressemitteilung:
    Journalisten
    Geowissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Forschende bei der Installation der Referenzstation in einem Gletschervorfeld am Fuss des Matterhorns. Die beiden Messstationen am Matterhorn befinden sich auf 4470 m ü. M. knapp unterhalb des Gipfels und auf 4003 m ü. M. im Solvaybiwak am am Hörnligrat.


    Zum Download

    x

    Seismometer auf 4470 m ü. M. unmittelbar unterhalb des Matterhorn-Gipfels


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).