idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
31.01.2022 11:44

Neues bildgebendes Verfahren enthüllt Ursachen von Hirnödemen

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Neurobiologie: Publikation im Journal for Neuroscience

    Hirnödeme sind eine gefährliche Komplikation bei vielen Erkrankungen des Gehirns, etwa eines Schlaganfalls. Forschende des Instituts für Neurobiologie der Heinrich-Heine-Universität Düsseldorf (HHU) entwickelten mit Bonner Kollegen und unter Beteiligung eines Berliner Optoelektronik-Unternehmens ein neues Messverfahren, mit dem sie die zellulären Ursachen von Hirnödemen besser entschlüsseln können. Dass vor allem der Ionenkanal TRPV4 eine wichtige Rolle spielt, beschreiben sie im aktuellen Journal der amerikanischen Society for Neuroscience.

    Unser Gehirn ist durch den knöchernen Schädel gut geschützt. Viele Erkrankungen führen jedoch zu einer Anschwellung des Gehirngewebes, was als „Hirnödem“ bezeichnet wird. Da sich das Gehirn innerhalb des Schädels nicht ausdehnen kann, kommt es in Folge dessen oft zu einem gefährlichen Anstieg des Hirndrucks. Dies schädigt weitere Gehirnzellen und kann zum Beispiel bei ursächlichen Schlaganfällen die Blutversorgung im Gehirn noch weiter verschlechtern.

    Die Ursachen von Hirnödeme sind vielfältig, bis heute existieren nur wenige therapeutische Ansätze, um sie erfolgreich einzudämmen. Daher ist bei vielen Patienten eine operative Entfernung des Schädeldachs – die sogenannte Kraniektomie – notwendig, um dem Gehirn genügend Raum zu verschaffen. Diese Operation ist aber nicht ohne Risiken – und sie unterdrückt auch die gefährliche Schwellung nicht.

    Prof. Dr. Christine Rose und ihr Team vom Institut für Neurobiologie der HHU entwickelten nun zusammen mit dem Unternehmen Picoquant ein neues Verfahren, mit dem sie in Echtzeit die Veränderungen darstellen können, die zu einer Schwellung von Nervenzellen führen. Dieses bildgebende Verfahren, „rapidFLIM“ genannt („schnelle Fluoreszenz-Lebenszeitmessung“), erlaubt es, zelluläre Prozesse in bisher unerreichter zeitlicher Auflösung darzustellen. Weitere konzeptionelle Unterstützung leistete Prof. Dr. Christian Henneberger von der Universität Bonn.

    In ihrem jetzt erschienenen Paper stellten die Forschenden die Bedingungen, denen Nervenzellen bei einem ischämischen Schlaganfall ausgesetzt sind, im Labor nach. Dr. Jan Meyer, einer der beiden Erstautoren der Studie: „Mithilfe des rapidFLIM konnten wir zeigen, dass eine zusammenbrechende zelluläre Energieversorgung – eine der wesentlichen Begleiterscheinungen eines Schlaganfalls – dazu führt, dass Nervenzellen schnell mit Natriumionen beladen werden. Dies wiederum verursacht die nachfolgende Zellschwellung maßgeblich.“

    Dr. Niklas Gerkau, Co-Erstautor der Studie, ergänzt: „Durch bisherige Verfahren war es nicht möglich, den zeitlichen Verlauf und das Ausmaß dieser Natriumbeladung richtig abzubilden. rapidFLIM in Kombination mit unserer hochauflösenden Multiphotonen-Mikroskopie eröffnet uns neue Perspektiven und ermöglicht auch ein besseres Verständnis der Natriumregulation von Nervenzellen.“

    Die Forschenden entdeckten in ihrer Studie weiterhin einen bislang unbekannten Mechanismus für die fatale Natriumbeladung, bei dem der Ionenkanal TRPV4 in den Nervenzellen eine wesentliche Rolle spielt. Dieser Kanal trägt wesentlich dazu bei, wie viel des Elements Natrium in die Zelle gelangt. Dazu Prof. Rose: „Der TRPV4-Kanal ist ein vielversprechender Ansatzpunkt, um zelluläre Schäden und die Infarktgröße nach einem ischämischen Schlaganfall zu begrenzen.“

    Die Forschungsarbeiten erfolgten im Rahmen der durch Prof. Rose an der HHU koordinierten Forschungsgruppe FOR 2795 „Synapsen unter Stress: akute Veränderungen durch mangelnde Energiezufuhr an glutamatergen Synapsen“, der auch Prof. Henneberger angehört. Weiterhin unterstützte die Ilselore-Luckow-Stiftung die Arbeiten.


    Originalpublikation:

    Jan Meyer*, Niklas J. Gerkau*, Karl W. Kafitz, Matthias Patting, Fabian Jolmes, Christian Henneberger & Christine R. Rose, Rapid fluorescence lifetime imaging reveals that TRPV4 channels promote dysregulation of neuronal Na+ in ischemia, Journal of the Society for Neuroscience, January 26, 2022, 42(4):552–566.

    DOI: 10.1523/JNEUROSCI.0819-21.2021


    Bilder

    Das HHU-Forschungsteam vom Institut für Neurobiologie (v.l.): Dr. Karl Kafitz, Dr. Jan Meyer, Prof. Dr. Christine Rose und Dr. Niklas Gerkau.
    Das HHU-Forschungsteam vom Institut für Neurobiologie (v.l.): Dr. Karl Kafitz, Dr. Jan Meyer, Prof. ...

    HHU / Institut für Neurobiologie

    Mikroskopische Fluoreszenz-Lebenszeit-Aufnahme eines hippocampalen CA1-Pyramidenneurons. Das Neuron wurde über eine sogenannte Patchpipette mit dem Natrium-sensitiven Farbstoff ING-2 gefüllt.
    Mikroskopische Fluoreszenz-Lebenszeit-Aufnahme eines hippocampalen CA1-Pyramidenneurons. Das Neuron ...

    HHU / Niklas J. Gerkau, Institut für Neurobiologie


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Das HHU-Forschungsteam vom Institut für Neurobiologie (v.l.): Dr. Karl Kafitz, Dr. Jan Meyer, Prof. Dr. Christine Rose und Dr. Niklas Gerkau.


    Zum Download

    x

    Mikroskopische Fluoreszenz-Lebenszeit-Aufnahme eines hippocampalen CA1-Pyramidenneurons. Das Neuron wurde über eine sogenannte Patchpipette mit dem Natrium-sensitiven Farbstoff ING-2 gefüllt.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).