idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
02.02.2022 13:00

First 3D structure of regulator protein revealed

Dr. Christina Hoppenbrock Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfälische Wilhelms-Universität Münster

    A team of researchers led by Prof. Daniel Kümmel from the University of Münster and Prof. Stefan Raunser from the Max Planck Institute of Molecular Physiology in Dortmund has revealed the structure of a protein complex which is an important regulator of cellular degradation processes.

    Proteins are indispensable components in living organisms. They are not only “building material” for the body – they also make molecular communication between cells possible, they are needed for nerve impulses to occur, and they control chemical reactions. What is decisive for proteins to function is their three-dimensional structure. If this is known, conclusions can be drawn about how proteins function. A team of researchers led by Prof. Daniel Kümmel from the University of Münster and Prof. Stefan Raunser from the Max Planck Institute (MPI) of Molecular Physiology in Dortmund has now clarified the structure of a protein complex which is an important regulator of cellular degradation processes.

    The protein complex “Mon1/Ccz1” determines which intracellular vesicles deliver their content to the cellular “recycling centre”, the lysosome. To this end, it docks onto the vesicle membrane, where it introduces a label. Intracellular vesicles are membrane bubbles which transport material through the cell. In the lysosome, the content is degraded and re-used. By elucidating the structure in almost atomic resolution, the researchers were now able to clarify, among other things, how the protein complex recognises the appropriate vesicles. For example, they showed that the complex has a positively charged and relatively flat area which determines its orientation after docking onto the vesicle membrane.

    “Mon1/Ccz1” belongs to a family of regulators for which no structural information exists. These complexes are involved in a range of cellular processes and are sometimes associated with the occurrence of developmental disorders such as albinism and blood clotting disorders. “Our structure now provides a basis for a better understanding of these connections,” says Daniel Kümmel.

    The protein complex examined comes from the filamentous fungus Chaetomium thermophilum and is particularly stable and easy to handle under laboratory conditions. It can serve as a model for human proteins. In order to determine the protein’s structure, the researchers used high-resolution cryogenic electron microscopy. "With this method, we can study the structure of proteins at temperatures around minus 150 degrees Celsius in an almost natural state," says Stefan Raunser.

    The researchers checked their results by means of biochemical studies, for example sedimentation assays. In this case, the protein-membrane interaction is demonstrated with artificial vesicles and purified protein in vitro, i.e. outside the organism. "The structure of Mon1/Ccz1 has a unique architecture that, to our knowledge, has not been demonstrated in any other protein complex. It could serve as a blueprint for a better understanding of other related regulatory proteins. We want to continue our successful collaboration," Daniel Kümmel and Stefan Raunser agree.

    Further information and funding

    The study was published in the interdisciplinary journal "Proceedings of the National Academy of Sciences of the United States of America". In addition to scientists from WWU Münster and MPI Dortmund, researchers from the University of Osnabrück were also involved. The German Research Foundation provided financial support for the work as part of Collaborative Research Centre (CRC) 944.

    Full image line

    Model for the docking of Mon1/Ccz1 onto membranes. Ccz1 (green) and Mon1 (blue) form a stable complex with a new type of structure. Positively charged areas on the surface of Mon1 interact with negatively charged lipids (red), and this ensures the correct orientation.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Daniel Kümmel
    University of Münster - Institut für Biochemie
    kuemmeld@uni-muenster.de
    https://www.uni-muenster.de/Chemie.bc/en/forschung/kuemmel/index.html

    Prof. Dr. Stefan Raunser
    Structural Biochemistry
    Max Planck Institute of Molecular Physiology, Dortmund
    stefan.raunser@mpi-dortmund.mpg.de
    https://www.mpi-dortmund.mpg.de/research-groups/raunser


    Originalpublikation:

    Björn U. Klink, Eric Herrmann, Claudia Antonia, Lars Langemeyer, Stephan Kiontke, Christos Gatsogiannis, Christian Ungermann, Stefan Raunser, Daniel Kümmel: Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. PNAS February 8, 2022 119 (6), https://doi.org/10.1073/pnas.2121494119


    Bilder

    Model for the docking of Mon1/Ccz1 onto membranes. Ccz1 (green) and Mon1 (blue) form a stable complex with a new type of structure.
    Model for the docking of Mon1/Ccz1 onto membranes. Ccz1 (green) and Mon1 (blue) form a stable comple ...

    University of Münster - Kümmel Lab


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Model for the docking of Mon1/Ccz1 onto membranes. Ccz1 (green) and Mon1 (blue) form a stable complex with a new type of structure.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).