idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.12.2022 10:55

Bei Hunger baut die Zelle um

Dr. Japhet Johnstone Stabsstelle Presse und Kommunikation
Freie Universität Berlin

    Neue Studie von Pharmakologieprofessor der Freien Universität Berlin zu „Hungerstoffwechsel“ in Science erschienen / Gemeinsame Pressemitteilung mit dem Leibniz-Forschungsinstitut für Molekulare Pharmakologie

    Körperzellen verbrennen Fettreserven, wenn die Versorgung mit Nährstoffen aus der Nahrung unterbleibt. Ein Team um den Pharmakologieprofessor Dr. Volker Haucke von der Freien Universität Berlin und Direktor am Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) sowie Dr. Wonyul Jang vom FMP hat nun einen bislang unbekannten Mechanismus entdeckt, wie dieser „Hungerstoffwechsel“ in Gang kommt – und was ihn hemmen kann. Die Ergebnisse wurden im angesehenen internationalen Fachblatt Science veröffentlicht (https://www.science.org/doi/10.1126/science.abq5209).

    Damit unser Körper funktioniert, brauchen Zellen Energie – und zwar zu jeder Zeit. In Hunger-Phasen, während derer keine Nährstoffe aufgenommen werden, muss sich der zelluläre Stoffwechsel also umstellen, damit die Versorgung mit Energie sichergestellt bleibt.

    Neue Erkenntnisse über diesen grundlegenden Mechanismus in der menschlichen Zelle gewannen Forschende des FMP, als sie eine seltene, erblich erworbene Muskelstörung untersuchten, die X-chromosomale Myotubuläre Myopathie (XLCNM). Bei dieser Erkrankung, die meist Jungen betrifft, ist ein Gen auf dem X-Chromosom defekt, was zu einer Entwicklungsstörung der Skelettmuskulatur führt. Diese Muskelschwäche ist so stark ausgeprägt, dass betroffene Kinder oft beatmet werden und im Rollstuhl sitzen müssen. Sie erreichen ein maximales Alter von etwa 10 bis 12 Jahren, in schweren Fällen sterben sie bereits nach der Geburt.

    Der bei dieser Erkrankung vorliegende Gendefekt betrifft die Lipidphosphatase MTM1. Dieses Enzym steuert den Umsatz eines Signallipids des Endosoms, eine bläschenartige Struktur in der Zelle, die an der Sortierung von Nährstoffrezeptoren beteiligt ist. Als die Forschenden die Struktur mutierter humaner Muskelzellen aus Patienten studierten, entdeckten sie Veränderungen am Endoplasmatischen Retikulum (ER), einem Membrannetzwerk, das sich über die ganze Zelle erstreckt. In gesunden Zellen stellt das ER eine Mischung miteinander verbundener ausgedehnter, „plattgewalzter“ Membransäcke in der Nähe des Zellkerns und dünner Schläuche in der Zellperipherie dar. In den kranken Zellen ist dieses Gleichgewicht in Richtung der dünnen Schläuche verschoben und die Membransäcke sind zudem durchlöchert. Eine ganz ähnliche Anreicherung dünner ER-Schläuche und durchlöcherter Membransäcke fanden die Forscher in Zellen im Hungerzustand, in denen MTM1 genetisch inaktiviert wurde.

    „Muskeln sind sehr hungersensibel, ihre Energiereserven halten nicht lange. Deswegen begannen wir zu vermuten, dass der Defekt in Zellen von XLCNM-Patienten mit einer inkorrekten Antwort auf Hunger zu tun haben könnte“, berichtet Volker Haucke. Bei Hunger entsteht in Zellen ein Mangel an Aminosäuren. Daraufhin, so fanden die Forschenden heraus, verändert das ER in gesunden Zellen seine Form, die äußeren dünnen Schläuche bilden sich zurück und werden zu flachen Membransäcken umgebaut. Diese veränderte Struktur des ER ermöglicht es den Mitochondrien – rundliche Organellen, die die Zelle mit Energie (Adenosintriphosphat, ATP) versorgen und mit dem ER in ständigem Kontakt stehen –, miteinander zu verschmelzen. „Solche etwa zehnfach vergrößerten ‚Riesen-Mitochondrien‘ sind viel besser in der Lage, Fette zu verstoffwechseln“, erläutert Dr. Wonyul Jang, Erstautor der Studie.

    Sowohl der Transport als auch die Verbrennung der Fette funktioniert allerdings nicht in Zellen, in denen MTM1 defekt ist. Die Schlüsselrolle spielt dabei das von MTM1 gesteuerte Endosom. Bei Hunger lösen sich in der gesunden Zelle die Kontaktstellen zwischen Endosom und ER auf, das sich in der Folge verformen kann. In Zellen von XLCNM-Patienten bleibt die Kontaktablösung jedoch aus: Das Endosom „zieht“ am ER, so dass periphere Schläuche gebildet werden und die Membransäcke fenestrieren. Da periphere ER-Schläuche für die Teilung der Mitochondrien verantwortlich sind, bleiben diese in Abwesenheit von MTM1 klein. In dieser Form sind sie viel schlechter in der Lage, Speicherfette zu verbrennen, was zu einem massiven Energiemangel in der Zelle führt (1).

    „Wir haben einen komplett neuen Mechanismus gefunden, wie verschiedene Kompartimente in der Zelle so miteinander kommunizieren, dass der Zellstoffwechsel je nach Nahrungsangebot umgebaut wird“, fasst Volker Haucke zusammen. Dabei zeigt die aktuelle Arbeit, dass Hungern für die Muskelzellen von XLCNM-Patienten absolut schädlich ist. Sie brauchen stetige Nahrungszufuhr, um einen Abbau der Muskelproteine zu Aminosäuren zu verhindern. In einer zweiten Arbeit (2) konnten Forschende des FMP zeigen, dass sich Defekte infolge des Verlustes der Lipidphosphatase MTM1 durch Inaktivierung des „entgegengesetzten“ Enzyms, der Lipidkinase PI3KC2B, grundsätzlich wieder reparieren lassen. Ob das bei XLCNM-Patienten funktionieren könnte, wird die Zukunft erweisen. Aktuell arbeitet ein Team um Volker Haucke daran, einen passenden Hemmstoff zu finden, der PI3KC2B ausschalten kann. Dass das grundsätzlich möglich ist, konnten sie bereits in Zellkultur nachweisen.


    Wissenschaftliche Ansprechpartner:

    Professor Dr. Volker Haucke
    Direktor am Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
    Professor für Molekulare Pharmakologie an der Freien Universität Berlin
    Mitglied des Exzellenzclusters NeuroCure
    Robert-Rössle-Str.10
    13125 Berlin, Campus Berlin-Buch
    E-Mail: haucke@fmp-berlin.de
    Web: www.leibniz-fmp.de/haucke

    Öffentlichkeitsarbeit:
    Silke Oßwald
    Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
    Robert-Rössle-Str.10
    13125 Berlin, Campus Berlin-Buch
    E-Mail: osswald@fmp-berlin.de


    Originalpublikation:

    (1) Jang, W., Puchkov, D., Samso, P., Liang, Y.T., Nadler-Holly, M., Sigrist, S.J., Kintscher, U., Liu, F., Mamchaoui, K., Mouly, V., Haucke, V. (2022) Endosomal lipid signalling reshapes the endoplasmic reticulum to control mitochondrial function. Science [advance online] https://www.science.org/doi/10.1126/science.abq5209

    (2) Samso, P.*, Koch, P.A.*, Posor, Y., Lo, W.T., Belabed, H., Nazare, M., Laporte, J., Haucke, V. (2022) Antagonistic control of active surface integrins by myotubularin and phosphatidylinositol 3-kinase C2b in a myotubular myopathy model. Proc Natl Acad Sci USA 119, e2202236119


    Weitere Informationen:

    https://www.science.org/doi/10.1126/science.abq5209


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Medizin
    überregional
    Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).