As climate change threatens coffee farming, experts at Nestlé, the world’s largest food company, are exploring how advanced data science and artificial intelligence can help select and breed more climate-resilient crops. Together with researchers from scientific institutions in Brazil, France, the US and elsewhere, they have published their latest findings in the journal Nature Genetics. Among the researchers were Professor Peter Florian Stadler, Director of the Interdisciplinary Centre for Bioinformatics (IZBI) at Leipzig University, and Dr Jan Engelhardt from the University of Vienna, who worked at Leipzig University during his doctorate.
Although there are more than 120 species of coffee, Arabica accounts for around 70 per cent of global coffee production. However, it is relatively intolerant of rising temperatures and susceptible to disease. To make matters worse, climate change is reducing the amount of land that can be used to grow coffee, and water scarcity is leading to significant yield losses.
Plant scientists are therefore looking for new Arabica varieties that are more resistant to disease and drought. As part of this work, the experts have developed an Arabica reference genome, which is now available in a publicly accessible digital database. This makes it easier to analyse different characteristics of this species of coffee in order to determine specific properties such as better yields, the size of the coffee cherries and greater resistance to disease or drought, as well as flavour or aroma characteristics.
“Once the new genome had been sequenced, it had to go through a process called annotation,” says Dr Jan Engelhardt. “For example, this involves identifying regions that contain information about the production of messenger RNAs. These ribonucleic acid molecules can essentially be translated into proteins.” But there are also “non-coding RNAs”, which have important functions in the regulation and coordination of every cell. “That is our speciality,” says Professor Peter Florian Stadler. “Working with our international colleagues, our group identified genomic regions that represent non-coding RNAs.” Alexandre Rossi Paschoal, a visiting scholar at the time, was also involved.
The reference genome will now help to identify important genetic markers in the Arabica genome that are responsible for certain characteristics in adult plants. The aim is to identify, select and breed new and improved varieties of Arabica coffee.
Prof. Dr. Peter F. Stadler
Phone: +49 341 97-16691
Mail: Peter.Stadler@bioinf.uni-leipzig.de
Web: http://www.bioinf.uni-leipzig.de
Dr. Jan Engelhardt
Phone: +43-1-4277-56706
Mail: jan.engelhardt@univie.ac.at
Web: https://theoretical.univie.ac.at/people/associated-scientists-and-postdocs/jan-e...
"The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars", https://www.nature.com/articles/s41588-024-01695-w
https://www.nestle.com/about/research-development/news/coffee-varieties-arabica-... News release by Nestlé
Professor Peter Florian Stadler, Director of the Interdisciplinary Centre for Bioinformatics (IZBI) ...
Antje Gildemeister
Leipzig University
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Informationstechnik
überregional
Forschungsergebnisse
Englisch
Professor Peter Florian Stadler, Director of the Interdisciplinary Centre for Bioinformatics (IZBI) ...
Antje Gildemeister
Leipzig University
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).