Berechnung mit Quantenlicht wird kompakter
Eine internationale Kollaboration unter der Leitung von Philip Walther von der Universität Wien hat einen bedeutenden Durchbruch in der Quantentechnologie erzielt: Die Forscher*innen demonstrierten mit einer neuartigen ressourceneffizienten Plattform erfolgreich die Quanteninterferenz zwischen mehreren einzelnen Photonen – ein bemerkenswerter Fortschritt im Bereich des optischen Quantencomputings, der den Weg für skalierbarere Quantentechnologien ebnet. Die Arbeit erscheint in der renommierten Fachzeitschrift Science Advances.
Die Interferenz zwischen Photonen, ein grundlegendes Phänomen in der Quantenoptik, dient als Eckpfeiler des optischen Quantencomputings. Dabei geht es darum, die Eigenschaften des Lichts, wie z. B. seinen Welle-Teilchen-Dualismus, nutzbar zu machen, um Interferenzmuster zu induzieren und so die Kodierung und Verarbeitung von Quanteninformation zu ermöglichen.
In traditionellen Multi-Photonen-Experimenten wird üblicherweise das sogenannte spatial encoding verwendet, bei dem Photonen in getrennten Pfaden manipuliert werden, um Interferenzen zu zeigen. Diese Experimente erfordern komplizierte Aufbauten mit zahlreichen Komponenten, was sie resourcenintensiv und nur schlecht skalierbar macht. Das internationale Team, bestehend aus Wissenschafter*nnen der Universität Wien, des Politecnico di Milano und der Université libre de Bruxelles, entschied sich dagegen für einen Ansatz, der auf temporaler Kodierung basiert. Diese Technik manipuliert das zeitliche Auftreten der Photonen und nicht ihre räumliche Statistik.
Um diesen Ansatz zu realisieren, entwickelten sie am Christian-Doppler-Labor der Universität Wien eine innovative Architektur, die einen “Looping” aus einer Glasfaser nutzt (Abb.1). Dieses Design ermöglicht die Verwendung derselben optischen Komponenten für alle Photonen und damit auch eine effiziente Multiphotoneninterferenz mit minimalen optischen Komponenten.
Erstautor Lorenzo Carosini von der Universität Wien erklärt: "In unserem Experiment haben wir Quanteninterferenz zwischen bis zu acht Photonen beobachtet, was den Umfang der meisten existierenden Experimente übertrifft. Dank der Vielseitigkeit unseres Ansatzes kann sogar das Muster, wie die Interferenz erzeugt wird, neu konfiguriert sowie die Größe des Experiments skaliert werden, ohne den optischen Aufbau zu ändern."
Die Ergebnisse zeigen die signifikante Verbesserung der Ressourcennutzung im Versuchsaufbau im Vergleich zu traditionellen räumlichen Kodierungsansätzen und ebnen den Weg für zugänglichere und skalierbarere Quantentechnologien.
Lorenzo Carosini, BSc MSc
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Sensengasse 8
T +39 3201150615
lorenzo.carosini@univie.ac.at
www.univie.ac.at
L. Carosini, V. Oddi, F. Giorgino, L. M. Hansen, B. Seron, S. Piacentini, T. Guggemos, I. Agresti, J. C. Loredo, and P. Walther. Programmable multi-photon quantum interference in a single spatial mode. Science Avances.
DOI: 10.1126/sciadv.adj0993
https://doi.org/10.1126/sciadv.adj0993
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Informationstechnik, Physik / Astronomie
überregional
Forschungs- / Wissenstransfer, Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).