G-Protein-gekoppelte Rezeptoren (GPCR) sind im menschlichen Körper allgegenwärtig und an vielen komplexen Signalwegen beteiligt. Trotz ihrer Bedeutung für zahlreiche biologische Vorgänge ist der zentrale Mechanismus der G-Protein-Kopplung und die damit einhergehende Signalübertragung bislang nicht verstanden. Einer Forschungsgruppe der Universität Leipzig ist es gelungen, den Mechanismus der Signalübertragung durch einen Adrenalin-bindenden Rezeptor auf atomarer Ebene nachzuverfolgen. Mit diesen Ergebnissen könnten Forschende zukünftig gezielter Nebenwirkungen bei der Entwicklung von Wirkstoffen umgehen. Die Studie wurde jetzt in "Nature Structural & Molecular Biology" veröffentlicht.
Jedes Lebewesen reagiert auf seine Umwelt. Durch einen äußeren Reiz werden im Körper Botenstoffe wie zum Beispiel Adrenalin ausgesendet, die an Rezeptoren binden. Die Rezeptoren übertragen das Signal auf weitere Proteine. Dadurch werden Signalkaskaden ausgelöst, die eine Reaktion im Organismus zur Folge haben wie zum Beispiel eine Kampf-oder-Flucht-Reaktion beim Adrenalin-bindenden Rezeptor. Medikamente sind diesen Botenstoffen oftmals nachempfunden und entfalten ihre Wirkung durch die Interaktion mit Rezeptoren. Nebenwirkungen können entstehen, wenn der Wirkstoff an einen falschen Rezeptor bindet oder das Signal nicht an das richtige intrazelluläre Protein überträgt. Um dies zu verhindern, erforschen Wissenschaftler:innen die Funktionsweise von Rezeptoren. Hildebrand und sein Team vom Institut für Medizinische Physik und Biophysik der Universität Leipzig zeigen in der aktuellen Studie, wie die Signalübertragung des β2 adrenergen Rezeptors auf atomarer Ebene erfolgt. Dabei handelt es sich um einen G-Protein-gekoppelten Rezeptor (GPCR). Die Mitglieder dieser Proteinsuperfamilie sind eingebettet in die Zellmembran.
Das Team nutzte für seine Untersuchungen computergestützte Moleküldynamiksimulationen sowie biochemische und funktionelle Mutationsanalysen. Damit beobachteten sie, wie der Rezeptor funktioniert: Durch Bindung verändert der Rezeptor die räumliche Gestalt des zellinneren G-Proteins, das daraufhin das Regulatormolekül GDP freisetzt. Im nächsten Schritt kann dieses G-Protein durch Bindung seines eigentlichen Substrats GTP aktiviert werden und Signalkaskaden in der Zelle auslösen. Darüber hinaus hat das Forschungsteam erkannt, dass die genaue Funktion des Rezeptors von der Anordnung diverser flexibler Strukturelemente abhängt. Mit klassischen Methoden der Strukturbiologie sind sie nicht charakterisierbar.
Die computergestützten biophysikalischen Methoden plant Prof. Hildebrand nun auch auf andere Rezeptorsysteme anzuwenden, wie zum Beispiel in der Adipositasforschung, ein Forschungsschwerpunkt an der Universitätsmedizin Leipzig. „Spannend sind vergleichende Untersuchungen zur dynamischen Signalübertragung, wenn Medikamente mit unterschiedlichem Wirkstoffprofil zum Einsatz kommen”, erläutert der Professor für biophysikalische Computersimulationen.
Prof. Dr. Peter W. Hildebrand forscht seit 2017 zu Rezeptoren an der Medizinischen Fakultät der Universität Leipzig. Von 2008 bis 2014 untersuchte er bereits an der Charité mit Prof. Dr. Klaus-Peter Hofmann und Dr. Patrick Scheerer die Struktur des Photorezeptors Rhodopsin. Mittlerweile arbeitet er auch mit dem Nobelpreisträger Prof. Dr. Brian Kobilka und dem Kryoelektronen-Mikroskopiker Prof. Dr. Yiorgo Skiniotis, Stanford University, USA, daran, GPCR vermittelte Signalübertragungen näher zu verstehen. Zusammen klärten sie kürzlich den Mechanismus der GTP-Bindung an das G-Protein und dessen Aktivierung auf und veröffentlichten die Ergebnisse im Fachmagazin „Nature“. „Wir verfügen jetzt zum ersten Mal über ein umfassendes Bild des strukturellen Mechanismus der Rezeptor vermittelten Signalübertragung von außen ins Innere der Zelle", fasst Hildebrand seine Forschung zusammen. „Diesen Erfolg verdanke ich neben meinen Kooperationspartnern vor allem den talentierten Nachwuchswissenschaftlern Dr. Hossein Batebi und Dr. Guillermo Pérez-Hernández aus meinem Team.“ G-Protein-gekoppelte Rezeptoren stehen an der Universität Leipzig auch im Fokus des Sonderforschungsbereichs (SFB) 1423 „Structural dynamics of GPCR activation and signaling“ unter der Sprecherschaft von Prof. Dr. Annette Beck-Sickinger.
Tom Goetze
Prof. Dr. Peter W. Hildebrand
Institut für Medizinische Physik und Biophysik
Medizinische Fakultät, Universität Leipzig
Telefon: +49 341 97 15712
E-Mail: peter.hildebrand@medizin.uni-leipzig.de
Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor; doi.org/10.1038/s41594-024-01334-2
Originaltitel der Veröffentlichung in „Nature“ mit Prof. Peter W. Hildebrand als Mitautor:
„Time-resolved cryo-EM of G-protein activation by a GPCR“; doi: 10.1038/s41586-024-07153-1
https://www.nature.com/articles/s41594-024-01334-2
https://www.nature.com/articles/s41586-024-07153-1
https://biophysik.medizin.uni-leipzig.de/research/prof-dr-peter-w-hildebrand/
Durch Bindung an den Rezeptor (grün) verändert das G-Protein (gelb) seine Form und setzt das Regulat ...
Foto: Peter W. Hildebrand
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Durch Bindung an den Rezeptor (grün) verändert das G-Protein (gelb) seine Form und setzt das Regulat ...
Foto: Peter W. Hildebrand
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).