idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.08.2024 08:40

Künstliche Intelligenz verbessert die Diagnostik von Lungenkrebs

Mathias Martin Kommunikation und Marketing
Universität zu Köln

    Neue KI-basierte, digitale Plattform ermöglicht besonders schnelle und präzise Analyse von Gewebsschnitten bei Patient*innen mit Lungenkrebs / Veröffentlichung in Cell Reports Medicine

    Ein Team von Wissenschaftler*innen der Medizinischen Fakultät und der Uniklinik Köln, geleitet von Privatdozent Dr. Yuri Tolkach und Professor Dr. Reinhard Büttner, hat eine digitale pathologische Plattform erstellt, deren Technologie auf Künstlicher Intelligenz (KI) basiert. Die Plattform nutzt neue von dem Team entwickelte Algorithmen und ermöglicht eine voll automatisierte Analyse von Gewebsschnitten von Patientinnen und Patienten mit Lungenkrebs. Digitalisierte Gewebeproben können mit der Plattform schneller und präziser, als es bisher möglich war, am Computer auf Lungentumore analysiert werden. Die Ergebnisse ihrer Forschung wurden unter dem Titel „Next generation lung cancer pathology: development und validation of diagnostic and prognostic algorithms“ im Fachjournal Cell Reports Medicine veröffentlicht.

    Lungenkrebs zählt zu den häufigsten Tumor/Krebserkrankungen beim Menschen und weist eine sehr hohe Sterblichkeitsrate auf. Heute ist die pathologische Untersuchung bei Patient*innen mit Lungenkrebs entscheidend für die Auswahl der Therapie. Zudem können Patholog*innen molekular spezifische genetische Veränderungen feststellen, die eine personalisierte Therapie ermöglichen. In den letzten Jahren erlebte die Pathologie eine digitale Transformation, wodurch Mikroskope nicht mehr benötigt werden. Typische Gewebsschnitte werden digitalisiert und nun auf dem Bildschirm eines Computers analysiert. Die Digitalisierung ist entscheidend für die Anwendung fortgeschrittener analytischer Methoden, wie beispielsweise künstliche Intelligenz. Durch den Einsatz künstlicher Intelligenz lassen sich aus pathologischen Gewebsschnitten zusätzliche Informationen über die Krebserkrankung gewinnen, die ohne die KI-Technologie nicht bekannt geworden wären.

    “Darüber hinaus zeigen wir, wie die Plattform für die Entwicklung von neuen klinischen Tools genutzt werden könnte. Die neuen Tools können nicht nur die Diagnosequalität verbessern, sondern auch neue Arten von Informationen über die Erkrankung der Patient*innen liefern, beispielsweise wie der Patient oder die Patientin auf eine Therapie anspricht”, erläutert der Oberarzt und Leiter der Studie, Privatdozent Dr. Yuri Tolkach vom Institut für Allgemeine Pathologie und Pathologische Anatomie der Uniklinik Köln.

    Um die breite Anwendbarkeit der Plattform zu belegen, wird das Forschungsteam zusammen mit fünf pathologischen Instituten aus Deutschland, Österreich und Japan eine Validierungsstudie durchführen.

    Presse und Kommunikation:
    Mathias Martin
    +49 221 470 1705
    m.martin@verw.uni-koeln.de

    Verantwortlich: Dr. Elisabeth Hoffmann – e.hoffmann@verw.uni-koeln.de


    Wissenschaftliche Ansprechpartner:

    Privatdozent Dr. Yuri Tolkach
    Institut für Allgemeine Pathologie und
    Pathologische Anatomie der Uniklinik Köln
    +49 221 478 87023
    iurii.tolkach@uk-koeln.de


    Originalpublikation:

    „Next generation lung cancer pathology: development und validation of diagnostic and prognostic algorithms“, Cell Reports Medicine,
    DOI: 10.1016/j.xcrm.2024.101697


    Bilder

    Das Bild zeigt, wie der Algorithmus initiale Aufarbeitung des typisch gefärbten Gewebsschnittes (links) macht und eine Karte erstellt, in der verschiedene Gewebsstypen in unterschiedlichen Farben zu sehen sind (Blau ist der Tumor/Adenokarzinom der Lunge)
    Das Bild zeigt, wie der Algorithmus initiale Aufarbeitung des typisch gefärbten Gewebsschnittes (lin ...
    Dr. Yuri Tolkach
    Dr. Yuri Tolkach


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Das Bild zeigt, wie der Algorithmus initiale Aufarbeitung des typisch gefärbten Gewebsschnittes (links) macht und eine Karte erstellt, in der verschiedene Gewebsstypen in unterschiedlichen Farben zu sehen sind (Blau ist der Tumor/Adenokarzinom der Lunge)


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).