idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.09.2024 14:53

Maßgeschneiderte Mikroben-Gemeinschaften

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Biologie: Veröffentlichung in Synthetic Biology

    Wie können Computermodelle dabei helfen, mikrobielle Gemeinschaften zu designen? Im Rahmen des von der Heinrich-Heine-Universität Düsseldorf (HHU) koordinierten Sonderforschungsbereichs SFB1535 „MibiNet“ untersuchte ein Forschungsteam aus Aachen, Düsseldorf und East Lansing / USA die Entwicklungsperspektiven der sogenannten Synthetischen Biologie. In der Fachzeitschrift Synthetic Biology erläutern sie, warum sie der rechnergestützten Biologie dabei eine besondere Rolle beimessen.

    Gemeinschaften von Mikroorganismen – Bakterien, Pilzen und Viren – finden sich überall, auch und gerade in Organismen. Sie erfüllen dort unterschiedliche Funktionen. So ist die mikrobielle Gemeinschaft im menschlichen Darm, das sogenannte Mikrobiom, essentiell für den Stoffwechsel; erst die Mikroorganismen schließen viele Nährstoffe auf und machen sie dem Körper verfügbar. Ist das Mikrobiom falsch zusammengesetzt, kann dies dem Gesamtorganismus erheblich schaden.

    Mit diesen mikrobiellen Netzwerken befasst sich zunehmend auch das interdisziplinäre Forschungsfeld der „Synthetischen Biologie“. Deren Ziel ist es, mithilfe ingenieurwissenschaftlicher Prinzipien neue biologische Systeme und Organismen zu entwerfen und zu bauen, die spezifische Funktionen erfüllen können. Gentechnische Methoden helfen dabei, DNA und RNA zu verändern und zwischen verschiedenen Organismen zu übertragen. Zunächst fokussierte sich die Synthetische Biologie auf einzelne synthetische Organsimen, inzwischen wird aber ihr Potenzial für das Design hochkomplexer Netzwerke, wie z.B. künstliche Gemeinschaften aus (synthetischen) Organismen, augenfällig.

    Mögliche Anwendungsgebiete solcher künstlichen Gemeinschaften sind breit gefächert. Sie umfassen beispielsweise die Eindämmung von Krankheiten, die Produktivitätssteigerung von Nutzpflanzen oder die Produktion wertvoller Biomoleküle.

    Forschende des SFB1535 MibiNet haben sich von natürlichen Flechten inspirieren lassen, in denen phototrophe Cyanobakterien oder Algen in enger symbiotischer Wechselwirkung mit heterotrophen Pilzpartnern stehen. Sie wollen die hier beispielhaft manifestierte mikrobiellen Vernetzung für künftige Anwendungen erschließen. Die Forschungsergebnisse sollen etwa dazu beitragen, interdisziplinäre Methoden und Technologien für CO2-negative Prozesse – also solche, die aktiv CO2 aus der Atmosphäre ziehen und fixieren – zu schaffen. In einem weiteren Forschungsprojekt ACCeSS soll die Sonnenenergie nutzbar gemacht werden, um Abwasser zu behandeln.

    In der Fachzeitschrift Synthetic Biology umreißen Forschende der RWTH Aachen, der HHU und der Michigan State University (MSU) in East Lansing in den USA diese zukünftige Entwicklungslinie der Synthetischen Biologie. Sie betonen darin die Rolle der computergestützten Biologie als integraler Baustein, die das Design künstlicher Gemeinschaften erheblich vereinfachen kann.

    Prof. Dr. Ilka Axmann von der HHU, Korrespondenzautorin der Studie: „Wir schlagen einen Perspektivwechsel vor, weg von einzelnen Organismen als solche hin zu den funktionalen Beiträgen, die Organismen innerhalb der Gemeinschaft leisten.“ Sie ergänzt zum Forschungsansatz: „Im Fokus steht die Funktion, die die Gemeinschaft insgesamt erfüllen soll. Es ist dafür unerheblich, welche speziellen Organismen sie enthält. Diese sind lediglich das Chassis, das die notwendigen Stoffwechselwege enthält und bereitstellt, um die erforderlichen funktionellen Aufgaben zu erledigen.“

    Dr. Daniel C. Ducat, Professor für Biochemie und Molekularbiologie an der MSU, ergänzt: „Es gibt immer mehr Beispiele dafür, dass sich zwar die spezifische Artenzusammensetzung komplexer mikrobieller Gemeinschaften im Laufe der Zeit oder an anderen Orten ändern kann; die spezifischen Funktionen der Gemeinschaft sind jedoch in einem größeren Maßstab stabil.“

    Dr. Anna Matuszyńska, Erstautorin der Studie und Juniorprofessorin für Computational Life Science an der RWTH: „Die computergestützte Biologie kann dabei helfen, eine wünschenswerte Modularisierung in der Synthetischen Biologie zu unterstützen, die sowohl die Komplexität reduziert als auch vielseitige, skalierbare Rahmenwerke schafft, die auf bestimmte Funktionen innerhalb biologischer Gemeinschaften zugeschnitten werden können. Mithilfe mathematischer Modelle können wir solche Systeme vorhersagen und optimieren, damit sie zuverlässig und effizient arbeiten. Dieses ‚In-silico-Design‘ sollte bereits in den frühesten Stadien des Aufbaus einer synthetischen Gemeinschaft eingesetzt werden."


    Originalpublikation:

    Anna Matuszyńska, Oliver Ebenhöh, Matias D. Zurbriggen, Daniel C. Ducat, Ilka M. Axmann. A new era of synthetic biology – microbial community design. Synthetic Biology, 2024, 9(1), ysae011.

    DOI: 10.1093/synbio/ysae011


    Weitere Informationen:

    https://www.sfb1535.hhu.de/mibinet
    https://www.access.hhu.de/


    Bilder

    Computergestützte Entwicklungszyklen in der Biologie. Zahnräder steht für die Synergie und das kontinuierliche Zusammenwirken von rechnergestützter (in silico) und synthetischer (in vivo) Arbeit.
    Computergestützte Entwicklungszyklen in der Biologie. Zahnräder steht für die Synergie und das konti ...

    RWTH Aachen / Anna Matuszyńska


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Medizin, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Computergestützte Entwicklungszyklen in der Biologie. Zahnräder steht für die Synergie und das kontinuierliche Zusammenwirken von rechnergestützter (in silico) und synthetischer (in vivo) Arbeit.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).