idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.10.2024 13:00

Neue Methode zur Herstellung innovativer 3D-Moleküle

Dr. Christina Hoppenbrock Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Universität Münster

    Ein Team um den Chemiker Prof. Dr. Frank Glorius von der Universität Münster hat sogenannte heteroatomsubstituierte käfigartige 3D-Moleküle synthetisiert. Diese Strukturen könnten als stabilere Alternativen zu herkömmlichen flachen aromatischen Ringen dienen und dazu beitragen, Herausforderungen der Arzneimittelentwicklung zu bewältigen.

    In ihrer Form erinnern sie an einen Käfig, und durch diese dreidimensionale Struktur sind sie deutlich stabiler als verwandte, flache Moleküle. Ringförmige „Käfig-Moleküle“ sind daher eine mögliche Alternative zu herkömmlichen Molekülringen aus der Gruppe der aromatischen Verbindungen und für die Arzneimittelentwicklung interessant. Ein Forschungsteam der Universität Münster um den Chemiker Prof. Dr. Frank Glorius hat eine neue Methode zur Herstellung sogenannter heteroatomsubstituierter 3D-Moleküle entwickelt und in der Zeitschrift „Nature Catalysis“ veröffentlicht. Die innovativen Strukturen entstehen durch präzises Einfügen einer dreiatomigen Einheit in einen gespannten (energiereichen) Ring des Reaktionspartners.

    Aromatische Ringe sind flache Ringe in organischen Molekülen. Sie gehören zu den häufigsten Motiven in Pharmazeutika und Agrochemikalien. Diese Strukturen können jedoch unter physiologischen Bedingungen instabil sein und dadurch die Wirksamkeit der pharmazeutischen Verbindungen beeinträchtigen. Um dieses Problem zu lösen, erforschen Wissenschaftlerinnen und Wissenschaftler komplexe dreidimensionale Alternativen – käfigartige Ringe, die steifer und stabiler sind. Während solche 3D-Ersatzstoffe für einfache flache Ringe wie Benzol (ein Ring mit sechs Kohlenstoffatomen) bereits verfügbar sind, war es bisher viel schwieriger, 3D-Versionen von flachen Ringen zu synthetisieren, die ein oder mehrere andere wichtige Atome wie Stickstoff, Sauerstoff oder Schwefel enthalten. Dabei sind gerade diese heteroaromatischen Ringe besonders häufig in Medikamenten mit biologisch aktiven Eigenschaften zu finden.

    Das Erfolgsrezept des münsterschen Forschungsteams war die Verwendung von Bicyclobutan, einem hochreaktiven Molekül, und die Auslösung der chemischen Reaktion mit Lichtenergie. „Durch die Verwendung eines lichtempfindlichen Katalysators konnten wir Stickstoff-, Sauerstoff- und Kohlenstoffatome präzise in dieses sehr reaktive kleine bicyclische Molekül einfügen und so eine neue Art von 3D-Ring synthetisieren“, beschreibt Frank Glorius. Frühere Studien hatten sich hauptsächlich auf das Einfügen von Kohlenstoffatomen in Bicyclobutan konzentriert. Im Gegensatz dazu führt das Einfügen von Heteroatomen wie Stickstoff und/oder Sauerstoff zu neuen Analoga von käfigartigen 3D-Ringen. „Diese neuen Ringe könnten möglicherweise als Ersatz für flache heteroaromatische Ringe in Arzneimittelmolekülen dienen und neue Möglichkeiten für die Arzneimittelentwicklung eröffnen“, ergänzt Dr. Chetan Chintawar. Die synthetisierten Ringe seien stabil, vielseitig und können leicht modifiziert werden, was sie zu nützlichen Bausteinen für die Herstellung zahlreicher anderer zyklischer Moleküle mache.

    Die Forscherinnen und Forscher führten experimentelle und computergestützte Studien durch, um den Mechanismus der Reaktion zu verstehen. Sie vermuten, dass die Reaktion mit dem lichtinduzierten Elektronentransfer vom angeregten Katalysator zu den reagierenden Molekülen beginnt und dann die Endprodukte entstehen.

    Die Deutsche Forschungsgemeinschaft (DFG), die Alexander-von-Humboldt-Stiftung und der Deutsche Akademische Austauschdienst unterstützten die Studie finanziell.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Frank Glorius
    Universität Münster
    Organisch-Chemisches Institut
    E-Mail: glorius@uni-muenster.de


    Originalpublikation:

    Chetan C. Chintawar, Ranjini Laskar, Debanjan Rana, Felix Schäfer, Nele Van Wyngaerden, Subhabrata Dutta, Constantin G. Daniliuc and Frank Glorius (2024): Photoredox-catalysed amidyl radical insertion to bicyclo[1.1.0]butanes. Nature Catalysis; DOI: https://doi.org/10.1038/s41929-024-01239-9


    Bilder

    Das Forschungsteam nutzte Lichtenergie, um die Reaktion auszulösen.
    Das Forschungsteam nutzte Lichtenergie, um die Reaktion auszulösen.
    Dr. Chetan Chintawar
    AG Glorius - Dr. Chetan Chintawar


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Das Forschungsteam nutzte Lichtenergie, um die Reaktion auszulösen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).