idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.03.2025 10:27

How could artificial intelligence be used globally to increase fairness in the distribution of public social services?

Kathrin Voigt Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    International consortium of researchers coordinated by Mainz University presents analysis results in an open access volume of articles

    Artificial intelligence (AI) is increasingly being used in many countries worldwide to provide public social services, assisting in entitlement decisions to state-paid pensions and unemployment benefits, assessments of asylum applications, and assignments of places at kindergartens. AI technology is intended to help apply fairness criteria in the allocation of this kind of support to individuals and to assess potential beneficiaries accordingly. However, fairness criteria vary from country to country. In India, for example, the caste system influences the distribution of social benefits. In China, access to social services is determined by a "good citizenship" score. But the concepts of fairness in terms of access to limited public resources also vary within Europe. These are major findings from the participative research undertaken by members of the AI FORA – Artificial Intelligence for Assessment project, which were published recently in an online open access volume. The project, coordinated by Johannes Gutenberg University Mainz (JGU), ran for three and half years. Other participants included the German Research Center for Artificial Intelligence in Kaiserslautern, the University of Augsburg, and the University of Surrey in the UK. The Volkswagen Foundation provided about EUR 1.5 million to finance the project, which was completed in December 2024.

    Comparison of AI-based social assessment in nine countries across four continents

    The open access volume, extending to some 300 pages, compares the status quo and the desired scenarios of AI-supported social evaluations in nine countries across four continents: Germany, Spain, Estonia, Ukraine, the USA, Nigeria, Iran, India, and China. "The case studies make apparent the extent to which criteria for being granted state services are determined by culture- and context-related factors. Even within societies, there are very different perspectives that are subject to constant reconsideration and negotiation. This must be reflected in the production of AI technology. Therefore, it is not sufficient to develop a single, standardized AI system for social assessment in public service provision and deploy it worldwide. We need flexible, dynamic, and adaptive systems. Their development requires the participation of all social stakeholders, including vulnerable groups, to design participatory, context-sensitive, and fair AI," emphasized Professor Petra Ahrweiler of JGU's Institute of Sociology, who coordinated the Al FORA project. The AI FORA researchers are currently preparing another publication in which they will outline the policy-relevant modeling and simulation results of the project. They aim to demonstrate how artificial intelligence can be improved to address fairness and discrimination issues in the allocation of public social services.

    Related links:
    https://www.ai-fora.de/ – Artificial Intelligence for Assessment (AI FORA)

    Read more:
    https://press.uni-mainz.de/can-ai-technologies-help-create-social-justice/ – press release "Can AI technologies help create social justice?" (29 July 2024)


    Wissenschaftliche Ansprechpartner:

    Professor Dr. Petra Ahrweiler
    Sociology of Technology and Innovation, Social Simulation
    Institute of Sociology
    Johannes Gutenberg University Mainz
    55099 Mainz
    phone: +49 6131 39-29132
    e-mail: petra.ahrweiler@uni-mainz.de
    https://technologyandinnovation.sociology.uni-mainz.de/team/prof-dr-petra-ahrwei...


    Originalpublikation:

    P. Ahrweiler (ed.), Participatory Artificial Intelligence in Public Social Services. From Bias to Fairness in Assessing Beneficiaries, Springer Cham, 3 March 2025,
    DOI: 10.1007/978-3-031-71678-2
    https://link.springer.com/book/10.1007/978-3-031-71678-2


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, jedermann
    Gesellschaft, Informationstechnik, Kulturwissenschaften, Politik, Wirtschaft
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).