idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.07.2025 12:16

Advancing Protein Simulation with Machine Learning

Jonas Krumbein Stabsstelle Kommunikation und Marketing
Freie Universität Berlin

    An international team led by Einstein Professor Cecilia Clementi in the Department of Physics at Freie Universität Berlin introduces a breakthrough in protein simulation. The study, published in the July 18, 2025, issue of Nature Chemistry, presents CGSchNet, a machine-learned coarse-grained (CG) model that can accurately and efficiently simulate proteins like never before. Operating significantly faster than traditional all-atom molecular dynamics, CGSchNet enables larger proteins and complex systems to be explored – offering potential applications in drug discovery and protein engineering that could advance cancer treatment methods for example.

    Developing a general CG model capable of capturing protein folding and dynamics has been a persistent challenge for scientists over the last fifty years. “This work is the first to demonstrate that deep learning can overcome this barrier and lead to a simulation system that approximates all-atom protein simulations without explicitly modeling solvent or atomic detail,” says Cecilia Clementi.

    In CGSchNet, Clementi’s team trained a graph neural network to learn the effective interactions between the particles of the coarse protein simulation to reproduce the dynamics of a diverse set of thousands of all-atom simulations. Unlike structure prediction tools, CGSchNet models the dynamical process, including intermediate states relevant to misfolding processes like the formation of amyloids, which are pathological protein aggregates that appear in cases of Alzheimer’s disease, for example. The model also simulates transitions between folded states – key to protein function – and generalizes to proteins outside its training set, demonstrating strong chemical transferability. Moreover, it accurately predicts metastable states of folded, unfolded, and disordered proteins, which constitutes the majority of biologically active proteins. Such predictions were extremely difficult in the past due to the flexibility of these proteins. The model is also able to estimate the relative folding free energies of protein mutants, which previous simulation methods could not achieve due to computational limitations.

    Professor Cecilia Clementi is a theoretical and computational biophysicist. She has previously conducted research as an Einstein Visiting Fellow at the Collaborative Research Centers “Investigation of Membranes – Molecular Mechanisms and Cellular Functions” and “Scale Cascades in Complex Systems” at Freie Universität Berlin. She is also the first scientist to be permanently recruited to work in Berlin following her support as an Einstein Visiting Fellow. Before moving to Berlin in 2020, Clementi was a professor of chemistry and physics at Rice University in Houston, Texas. Her role at Freie Universität allows her to strengthen research in theoretical and computer-assisted biophysics in Berlin and to build a bridge between experimental biophysics and applied mathematics.

    About Einstein Professorships
    The Einstein Foundation supports the Berlin universities and Charité – Universitätsmedizin in their efforts to recruit and retain pioneering scientists in Berlin through its Einstein Professorship program. The funds provided by the Einstein Professorship program can be used to boost the respective institution’s budget.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Cecilia Clementi, Department of Physics, Freie Universität Berlin, Email: cecilia.clementi@fu-berlin.de


    Originalpublikation:

    https://doi.org/10.1038/s41557-025-01874-0


    Bilder

    Developing a general CG model capable of capturing protein folding and dynamics has been a persistent challenge for scientists over the last fifty years.
    Developing a general CG model capable of capturing protein folding and dynamics has been a persisten ...
    Quelle: Thomas Splettstoesser
    Copyright: Thomas Splettstoesser


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Biologie, Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Developing a general CG model capable of capturing protein folding and dynamics has been a persistent challenge for scientists over the last fifty years.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).