idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.09.2025 11:09

How synapses stick together

Eva Schissler Kommunikation und Marketing
Universität zu Köln

    Scientists in Cologne offer a molecular perspective on the architecture of a synapse. They have discovered that a protein in the brain forms flexible filaments, thereby acting as an essential building block of inhibitory synapses / publication in “Nature Communications”

    A team of scientists from the University of Cologne’s Institute of Biochemistry has made a decisive discovery about the molecular basis of synapse formation in the central nervous system. They studied inhibitory synapses, the so-called “brakes” in our brain, which regulate that a signal is no longer transmitted. Specifically, the researchers looked at a protein called gephyrin, which stabilizes one half of these synapses, the so-called postsynaptic density. The research, published in the journal Nature Communications under the title “Gephyrin filaments represent the molecular basis of inhibitory postsynaptic densities” reveals a previously unknown form of molecular interaction in the protein gephyrin, allowing it to form elongated filaments. These filaments are the organizational foundation for the formation of the post-synapse, which in turn results in the formation of billions of synapses that the brain uses in almost all communication functions.

    Led by experts Professor Dr Günter Schwarz and Professor Dr Elmar Behrmann, the team used cutting-edge cryo-electron microscopy to visualize the 3-dimensional structure of the protein gephyrin. The study found that one domain of gephyrin, which binds to the neuro-receptor and forms dimers (larger structures composed of a pair of proteins), builds elongated filamentous structures, which was a huge surprise. Before, it was thought that proteins in phase-separated condensates are disordered, but now a remarkable level of organization was revealed. In addition to the structural work, in vitro experiments and work in isolated cell lines not only highlighted that these filaments are required to form synapses, but also explain why specific mutations found in the gephyrin gene cause neurological diseases.

    “This is a major breakthrough in our understanding of the molecular basis of inhibitory synapses formation,” says Günter Schwarz, lead author of the study. “Our findings have significant implications for the development of new treatments for neurological disorders related to these synapses, such as epilepsy.”

    Elmar Behrmann, the other lead author, adds: “The use of cryo-electron microscopy allowed us to visualize the gephyrin filaments in unprecedented detail. This has given us a deeper understanding of the molecular mechanisms underlying inhibitory synapses and has opened up new avenues for research.”

    The study’s first author, Dr Arthur Macha, a postdoctoral researcher shared between both labs, said: “We were initially surprised to find interfaces between gephyrin molecules in our data that looked like the ‘Zoro’ Z. This discovery closes the gap in our understanding of how receptor arrangement, gephyrin interaction, and synapse formation are functionally connected.”

    The research was conducted at the University of Cologne’s Institute of Biochemistry, which is known for its expertise in structural biology, protein, peptide, and redox biochemistry. The study’s findings have the potential to revolutionize our understanding of the molecular basis of inhibitory postsynaptic densities and will form the basis to dissect the architecture of entire synapses on a new molecular level, the team concluded.


    Wissenschaftliche Ansprechpartner:

    Professor Dr Elmar Behrmann
    +49 221 470 76300
    elmar.behrmann@uni-koeln.de

    Professor Dr Günter Schwarz
    49 221 470 6441
    gschwarz@uni-koeln.de


    Originalpublikation:

    https://www.nature.com/articles/s41467-025-63748-w


    Bilder

    Representative cryo-electron microscopy image: a coloured image of the 3D structure of gephyrin, which was calculated from the data.
    Representative cryo-electron microscopy image: a coloured image of the 3D structure of gephyrin, whi ...

    Copyright: Arthur Macha


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Representative cryo-electron microscopy image: a coloured image of the 3D structure of gephyrin, which was calculated from the data.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).