idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
12.12.2018 09:31

Biofilme generieren ihre Nährstoffversorgung selbst

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Interdisziplinäre Forschung zwischen Hydrodynamik und Biophysik

    12.12.2018 – Ein internationales Physikerteam von der Heinrich-Heine-Universität Düsseldorf (HHU), aus den USA und Chile untersuchte und modellierte, wie sich Biofilme mit Nährstoffen versorgen. Daraus können die Forscher Strategien ableiten, wie gefährlichen Biofilmen die Nahrungsversorgung abgeschnitten werden kann. Ihre Ergebnisse präsentieren sie in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters.

    „Biofilme“ sind schleimig-glitschige Beläge von Mikroorganismen, die sich auf Gegenständen, aber auch Gewebe ablagern. Handelt es sich bei den Mikroorganismen zum Beispiel um Bakterien, bergen diese Biofilme unter Umständen erhebliche Gesundheitsgefahren. Solche Biofilme können etwa bakterielle Zahnbeläge sein, die zu Karies und Parodontitis führen. Doch so einfach ist das Leben der Mikroorganismen in den Filmen nicht, denn sie benötigen Nährstoffe.

    In einer weltumspannenden Kooperation haben Physiker vom Institut für Theoretische Physik II der HHU, aus Stanford (USA), Argonne (USA) und Santiago de Chile untersucht, wie die Mikroorganismen ihre Nährstoffversorgung sicherstellen können. Dazu haben sie betrachtet, welche Bewegungsstrategien die einzelnen Bakterien ausführen müssen, um so eine Strömung zu erzeugen. Der entstehende Wasserfluss sollte dann gleichsam automatisch die Nährstoffe zu ihnen herantragen und die Bakterien optimal versorgen. Dazu haben die Forscher eine umfangreiche mikro-hydrodynamische Theorie entwickelt und für verschiedene Bewegungstypen analysiert.

    „Führen alle Bakterien die gleichen Bewegungen aus, führt das zum Stillstand des Wasserflusses und damit zu ihrem sicheren Hungertod", so Prof. Dr. Hartmut Löwen, HHU-Physiker und Mitautor der Studie. Diversität oder Inhomogenität in den Bewegungen erzeugt dagegen wie von selbst eine weitreichende und zum Biofilm hingerichtete Strömung, über die dann Nährstoffe herangetragen werden.
    Durch Musterbildung auf den Biofilmen kann der Zufluss gesteuert werden. Dabei entdeckten die Wissenschaftler ein verblüffend einfaches Baukastenprinzip, mit dem man systematisch Flüsse überlagern kann. Die Ergebnisse ihrer Berechnungen stellen die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters vor.

    Das über Nährstoffversorgung entscheidende Flussfeld ist normalerweise nicht direkt sichtbar. „Deswegen“, so Prof. Löwen, „wollten wir es durch unsere Rechnungen sichtbar machen. Wir stießen dabei auf ein allgemeines Prinzip, welches ein hohes Anwendungspotential besitzt.“ Denn über die Störung des Zuflusses kann es gelingen, Bakterienkolonien ohne Gift zu zerstören. Andererseits erreicht man bei gewünschten Biofilmen durch intelligente Kooperation der Mikroorganismen eine weitflächige Nahrungsmittelversorgung.

    Dieses Prinzip ist nicht auf Bakterien beschränkt, sondern es gilt auch für Mikroroboter oder „künstliche Schwimmer“ – letztere sind Partikel, die sich mittels Brennstoffen in Bewegung setzen können und zum Beispiel potenziell dazu verwendet werden können, um Medikamente im menschlichen Körper zu einem gewünschten Zielort zu transportieren.


    Originalpublikation:

    A. J. T. M. Mathijssen, F. Guzman-Lastra, A. Kaiser, H. Löwen, Nutrient transport driven by microbial active carpets, Physical Review Letters 121, 248101 (2018).
    DOI: 10.1103/PhysRevLett.121.248101


    Bilder

    Bewegungsmuster auf einem ebenen Biofilm (blau-rot gefärbt) und dadurch erzeugte Flusslinien vom Lösungsmittel (blau), die für den Transport von Nährstoffen (bunte Kugeln) sorgen.
    Bewegungsmuster auf einem ebenen Biofilm (blau-rot gefärbt) und dadurch erzeugte Flusslinien vom Lös ...
    Stanford University / Arnold J. T. M. Mathijssen
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).